login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A138196
Number of different ways n! can be represented as the difference of two squares; also, for n >= 4, half the number of positive integer divisors of n!/4.
3
1, 0, 0, 2, 4, 9, 18, 36, 60, 105, 210, 324, 648, 1080, 1680, 2352, 4704, 6480, 12960, 18360, 27200, 43200, 86400, 110880, 155232, 243936, 310464, 423360, 846720, 1080000, 2160000, 2592000, 3686400, 5713920, 7713792, 9237888, 18475776
OFFSET
1,4
COMMENTS
For maximal value x such that x^2 - y^2 = n! see A139151, for maximal value y such that x^2 - y^2 = n! see A181892. - Artur Jasinski, Mar 31 2012
LINKS
FORMULA
For n >= 4, if p_i is the i-th prime, with p_k the largest prime not exceeding n and n!/4 = (p_1^e_1)*(p_2^e_2)* ... *(p_k^e_k), then a(n) = (1/2)*(e_1+1)*(e_2_+1)* ... *(e_k+1).
EXAMPLE
a(5)=4 since 5! = 120 = 31^2 - 29^2 = 17^2 - 13^2 = 13^2 - 7^2 = 11^2 - 1^2.
MAPLE
A138196 := proc(n)
if n <= 3 then
op(n, [1, 0, 0]) ;
else
numtheory[tau](n!/4)/2 ;
end if;
end proc: # R. J. Mathar, Apr 03 2012
MATHEMATICA
(* for n>=4 *) cc = {}; Do[w = n!/4; kk = Floor[(DivisorSigma[0, w] + 1)/2]; AppendTo[cc, kk], {n, 4, 54}]; cc (* Artur Jasinski, Mar 31 2012 *)
PROG
(PARI) a(n) = if (n<4, (n==1), numdiv(n!/4)/2); \\ Michel Marcus, Jun 22 2019
CROSSREFS
Sequence in context: A065055 A065030 A103321 * A298404 A101351 A293333
KEYWORD
nonn
AUTHOR
John T. Robinson (jrobinson(AT)acm.org), May 04 2008
STATUS
approved