login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of different ways n! can be represented as the difference of two squares; also, for n >= 4, half the number of positive integer divisors of n!/4.
3

%I #28 Jun 23 2019 00:48:30

%S 1,0,0,2,4,9,18,36,60,105,210,324,648,1080,1680,2352,4704,6480,12960,

%T 18360,27200,43200,86400,110880,155232,243936,310464,423360,846720,

%U 1080000,2160000,2592000,3686400,5713920,7713792,9237888,18475776

%N Number of different ways n! can be represented as the difference of two squares; also, for n >= 4, half the number of positive integer divisors of n!/4.

%C For maximal value x such that x^2 - y^2 = n! see A139151, for maximal value y such that x^2 - y^2 = n! see A181892. - _Artur Jasinski_, Mar 31 2012

%H Sudipta Mallick, <a href="/A138196/b138196.txt">Table of n, a(n) for n = 1..1000</a>

%F For n >= 4, if p_i is the i-th prime, with p_k the largest prime not exceeding n and n!/4 = (p_1^e_1)*(p_2^e_2)* ... *(p_k^e_k), then a(n) = (1/2)*(e_1+1)*(e_2_+1)* ... *(e_k+1).

%e a(5)=4 since 5! = 120 = 31^2 - 29^2 = 17^2 - 13^2 = 13^2 - 7^2 = 11^2 - 1^2.

%p A138196 := proc(n)

%p if n <= 3 then

%p op(n,[1,0,0]) ;

%p else

%p numtheory[tau](n!/4)/2 ;

%p end if;

%p end proc: # _R. J. Mathar_, Apr 03 2012

%t (* for n>=4 *) cc = {}; Do[w = n!/4; kk = Floor[(DivisorSigma[0, w] + 1)/2]; AppendTo[cc, kk], {n, 4, 54}]; cc (* _Artur Jasinski_, Mar 31 2012 *)

%o (PARI) a(n) = if (n<4, (n==1), numdiv(n!/4)/2); \\ _Michel Marcus_, Jun 22 2019

%Y Cf. A139151, A181892.

%K nonn

%O 1,4

%A John T. Robinson (jrobinson(AT)acm.org), May 04 2008