|
|
A104234
|
|
Number of k >= 1 such that k+n == 0 mod 2^k.
|
|
5
|
|
|
0, 1, 1, 1, 0, 2, 1, 1, 0, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 0, 2, 1, 1, 0, 1, 1, 2, 1, 2, 1, 1, 0, 1, 1, 1, 0, 2, 1, 1, 0, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 0, 2, 1, 1, 0, 1, 2, 2, 1, 2, 1, 1, 0, 1, 1, 1, 0, 2, 1, 1, 0, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 0, 2, 1, 1, 0, 1, 1, 2, 1, 2, 1, 1, 0, 1, 1, 1, 0, 2, 1, 1, 0, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,6
|
|
COMMENTS
|
Number of terms in the summation in the formula for A102370(n).
Also, a(n) is the number of 1's in (A103185(n) written in base 2).
|
|
REFERENCES
|
David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, Sloping binary numbers: a new sequence related to the binary numbers, J. Integer Seq. 8 (2005), no. 3, Article 05.3.6, 15 pp.
|
|
LINKS
|
Table of n, a(n) for n=0..105.
David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, Sloping binary numbers: a new sequence related to the binary numbers [pdf, ps].
|
|
FORMULA
|
a(2^k + y ) = a(y) + 1 if y = 2^k - k - 1, = a(y) otherwise (where 0 <= y <= 2^k - 1)
|
|
MAPLE
|
f:=proc(n) local t1, l; t1:=0; for l from 1 to n do if n+l mod 2^l = 0 then t1:=t1+1; fi; od: t1; end;
|
|
CROSSREFS
|
Cf. A102370, A103185, A105035 (records).
Sequence in context: A194285 A135341 A033665 * A321926 A037870 A250205
Adjacent sequences: A104231 A104232 A104233 * A104235 A104236 A104237
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
N. J. A. Sloane, Apr 02 2005
|
|
STATUS
|
approved
|
|
|
|