login
A104234
Number of k >= 1 such that k+n == 0 mod 2^k.
5
0, 1, 1, 1, 0, 2, 1, 1, 0, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 0, 2, 1, 1, 0, 1, 1, 2, 1, 2, 1, 1, 0, 1, 1, 1, 0, 2, 1, 1, 0, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 0, 2, 1, 1, 0, 1, 2, 2, 1, 2, 1, 1, 0, 1, 1, 1, 0, 2, 1, 1, 0, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 0, 2, 1, 1, 0, 1, 1, 2, 1, 2, 1, 1, 0, 1, 1, 1, 0, 2, 1, 1, 0, 1
OFFSET
0,6
COMMENTS
Number of terms in the summation in the formula for A102370(n).
Also, a(n) is the number of 1's in (A103185(n) written in base 2).
LINKS
David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, Sloping binary numbers: a new sequence related to the binary numbers [pdf, ps].
David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, Sloping binary numbers: a new sequence related to the binary numbers, J. Integer Seq. 8 (2005), no. 3, Article 05.3.6, 15 pp.
FORMULA
a(2^k + y) = a(y) + 1 if y = 2^k - k - 1, = a(y) otherwise (where 0 <= y <= 2^k - 1).
MAPLE
f:=proc(n) local t1, l; t1:=0; for l from 1 to n do if n+l mod 2^l = 0 then t1:=t1+1; fi; od: t1; end;
CROSSREFS
Cf. A102370, A103185, A105035 (records).
Sequence in context: A135341 A344299 A033665 * A355905 A368183 A367905
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Apr 02 2005
STATUS
approved