

A104234


Number of k >= 1 such that k+n == 0 mod 2^k.


5



0, 1, 1, 1, 0, 2, 1, 1, 0, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 0, 2, 1, 1, 0, 1, 1, 2, 1, 2, 1, 1, 0, 1, 1, 1, 0, 2, 1, 1, 0, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 0, 2, 1, 1, 0, 1, 2, 2, 1, 2, 1, 1, 0, 1, 1, 1, 0, 2, 1, 1, 0, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 0, 2, 1, 1, 0, 1, 1, 2, 1, 2, 1, 1, 0, 1, 1, 1, 0, 2, 1, 1, 0, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,6


COMMENTS

Number of terms in the summation in the formula for A102370(n).
Also, a(n) is the number of 1's in (A103185(n) written in base 2).


REFERENCES

David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, Sloping binary numbers: a new sequence related to the binary numbers, J. Integer Seq. 8 (2005), no. 3, Article 05.3.6, 15 pp.


LINKS

Table of n, a(n) for n=0..105.
David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, Sloping binary numbers: a new sequence related to the binary numbers [pdf, ps].


FORMULA

a(2^k + y ) = a(y) + 1 if y = 2^k  k  1, = a(y) otherwise (where 0 <= y <= 2^k  1)


MAPLE

f:=proc(n) local t1, l; t1:=0; for l from 1 to n do if n+l mod 2^l = 0 then t1:=t1+1; fi; od: t1; end;


CROSSREFS

Cf. A102370, A103185, A105035 (records).
Sequence in context: A194285 A135341 A033665 * A321926 A037870 A250205
Adjacent sequences: A104231 A104232 A104233 * A104235 A104236 A104237


KEYWORD

nonn


AUTHOR

N. J. A. Sloane, Apr 02 2005


STATUS

approved



