login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of solutions i in range [0,n-1] to i == 0 mod 2^(n-i).
5

%I #12 Mar 29 2015 14:13:48

%S 1,1,2,1,2,2,2,1,2,2,3,1,2,2,2,1,2,2,3,2,2,2,2,1,2,2,3,1,2,2,2,1,2,2,

%T 3,2,3,2,2,1,2,2,3,1,2,2,2,1,2,2,3,2,2,2,2,1,2,2,3,1,2,2,2,1,2,2,3,2,

%U 3,3,2,1,2,2,3,1,2,2,2,1,2,2,3,2,2,2,2,1,2,2,3,1,2,2,2,1,2,2,3

%N Number of solutions i in range [0,n-1] to i == 0 mod 2^(n-i).

%C i=0 is always a solution.

%C a(n) is the number of 1's in (A103745(n) written in base 2). - _Philippe Deléham_, Apr 02 2005

%H David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, Sloping binary numbers: a new sequence related to the binary numbers [<a href="http://neilsloane.com/doc/slopey.pdf">pdf</a>, <a href="http://neilsloane.com/doc/slopey.ps">ps</a>].

%F a(n) = A104234(2^n - n). - _Philippe Deléham_, Apr 21 2005

%e For n = 11 solutions are i = 0, 8 and 10. Four solutions occur for the first time at n = 2059: they are i = 0, 2048, 2056, 2058. Five solutions occur for the first time at n = 2^2059 + 2059 (see A034797).

%p f:= proc (n) local t1, l; t1 := 0; for l to n do if `mod`(n-l,2^l) = 0 then t1 := t1+1 end if end do; t1 end proc;

%t f[n_] := Block[{c = 1, k = Max[1, n - Floor[ Log[2, n] + 2]]}, While[k < n, If[ Mod[k, 2^(n - k)] == 0, c++ ]; k++ ]; c]; Table[ f[n], {n, 105}] (* _Robert G. Wilson v_, Mar 21 2005 *)

%Y For records see A034797. Cf. A103745.

%K nonn

%O 1,3

%A _N. J. A. Sloane_, Mar 21 2005