OFFSET
0,2
COMMENTS
In general, Sum_{k=0..n} binomial(2n+1,2k)*r^(n-k) has g.f. (1-(r-1)x)/(1-2(r+1)+(r-1)^2x^2) and a(n) = ((sqrt(r)-1)^(2n+1) + (sqrt(r)+1)^(2n+1))/(2*sqrt(r)).
LINKS
FORMULA
G.f.: (1-2x)/(1-8x+4x^2);
a(n) = 8*a(n-1) - 4*a(n-2);
a(n) = sqrt(3)*(sqrt(3)-1)^(2n+1)/6 + sqrt(3)*(sqrt(3)+1)^(2n+1)/6.
a(n) = 2^n*A079935(n). - R. J. Mathar, Sep 20 2012
a(n) = 2^(2*n+1)*Sum_{k >= n} binomial(2*k,2*n)*(1/3)^(k+1). Cf. A099156. - Peter Bala, Nov 29 2021
3*a(n)^2 = A107903(n)^2 + 2^(2*n+1). - Philippe Deléham, Mar 21 2023
MATHEMATICA
LinearRecurrence[{8, -4}, {1, 6}, 20] (* Harvey P. Dale, Sep 28 2021 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jan 22 2005
STATUS
approved