login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227665
Number of lattice paths from {n}^3 to {0}^3 using steps that decrement one component by 1 such that for each point (p_1,p_2,p_3) we have abs(p_{i}-p_{i+1}) <= 1.
2
1, 6, 44, 320, 2328, 16936, 123208, 896328, 6520712, 47437640, 345104904, 2510609608, 18264477064, 132872558664, 966636864776, 7032203170760, 51158695924872, 372175277815624, 2707544336559112, 19697160911545032, 143295215053933448, 1042460827200624200
OFFSET
0,2
FORMULA
G.f.: (x-1)/(2*x^2+7*x-1).
a(n) = 7*a(n-1) + 2*a(n-2) for n>1, a(0)=1, a(2)=6.
EXAMPLE
a(1) = 3! = 3*2*1 = 6:
(0,1,1) - (0,0,1)
/ X \
(1,1,1) - (1,0,1) (0,1,0) - (0,0,0)
\ X /
(1,1,0) - (1,0,0)
MAPLE
a:= n-> (<<0|1>, <2|7>>^n. <<1, 6>>)[1, 1]:
seq(a(n), n=0..25);
CROSSREFS
Column k=3 of A227655.
Cf. A000142.
Sequence in context: A156002 A091163 A189800 * A102591 A114935 A115969
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Jul 19 2013
STATUS
approved