%I #14 Oct 05 2021 16:29:01
%S 1,6,44,320,2328,16936,123208,896328,6520712,47437640,345104904,
%T 2510609608,18264477064,132872558664,966636864776,7032203170760,
%U 51158695924872,372175277815624,2707544336559112,19697160911545032,143295215053933448,1042460827200624200
%N Number of lattice paths from {n}^3 to {0}^3 using steps that decrement one component by 1 such that for each point (p_1,p_2,p_3) we have abs(p_{i}-p_{i+1}) <= 1.
%H Alois P. Heinz, <a href="/A227665/b227665.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (7,2).
%F G.f.: (x-1)/(2*x^2+7*x-1).
%F a(n) = 7*a(n-1) + 2*a(n-2) for n>1, a(0)=1, a(2)=6.
%e a(1) = 3! = 3*2*1 = 6:
%e (0,1,1) - (0,0,1)
%e / X \
%e (1,1,1) - (1,0,1) (0,1,0) - (0,0,0)
%e \ X /
%e (1,1,0) - (1,0,0)
%p a:= n-> (<<0|1>, <2|7>>^n. <<1, 6>>)[1, 1]:
%p seq(a(n), n=0..25);
%Y Column k=3 of A227655.
%Y Cf. A000142.
%K nonn,easy
%O 0,2
%A _Alois P. Heinz_, Jul 19 2013