login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A102593
Triangle read by rows: T(n,k) is the number of noncrossing trees with n edges in which the maximum number of contiguous border edges starting from the root in counterclockwise direction is equal to k.
3
1, 0, 1, 1, 1, 1, 5, 4, 2, 1, 25, 18, 8, 3, 1, 130, 88, 37, 13, 4, 1, 700, 455, 185, 63, 19, 5, 1, 3876, 2448, 973, 325, 97, 26, 6, 1, 21945, 13566, 5304, 1748, 518, 140, 34, 7, 1, 126500, 76912, 29697, 9690, 2856, 775, 193, 43, 8, 1, 740025, 444015, 169763, 54967
OFFSET
0,7
COMMENTS
Row n has n+1 terms. Row sums yield the ternary numbers (A001764). T(n,0)=A102893(n).
LINKS
P. Flajolet and M. Noy, Analytic combinatorics of non-crossing configurations, Discrete Math., 204, 203-229, 1999.
M. Noy, Enumeration of noncrossing trees on a circle, Discrete Math., 180, 301-313, 1998.
FORMULA
T(n, k) = (k+1)binomial(3n-2k, n-k)/(2n-k+1) - (k+2)binomial(3n-2k-2, n-k-1)/(2n-k) if n > 1, 0 <= k <= n; T(1, 1)=1; T(0, 0)=1; T(n, k)=0 if k > n.
G.f.: G(t, z) = g(1-zg)/(1-tzg), where g = 1+zg^3 is the g.f. for the ternary numbers (A001764).
EXAMPLE
T(2,0) = T(2,1) = T(2,2) = 1 because in _\, /\ and /_ the maximum number of contiguous border edges starting from the root in counterclockwise direction is 0,1 and 2, respectively.
Triangle starts:
1;
0, 1;
1, 1, 1;
5, 4, 2, 1;
25, 18, 8, 3, 1;
130, 88, 37, 13, 4, 1;
700, 455, 185, 63, 19, 5, 1;
...
MAPLE
T:=proc(n, k) if n=0 and k=0 then 1 elif n=1 and k=1 then 1 elif k<=n then (k+1)*binomial(3*n-2*k, n-k)/(2*n-k+1)-(k+2)*binomial(3*n-2*k-2, n-k-1)/(2*n-k) else 0 fi end: for n from 0 to 10 do seq(T(n, k), k=0..n) od; # yields sequence in triangular form
MATHEMATICA
T[n_ /; n>1, k_] /; 0 <= k <= n := (k + 1) Binomial[3n - 2k, n - k]/(2n - k + 1) - (k + 2) Binomial[3n - 2k - 2, n - k - 1]/(2n - k); T[1, 1] = T[0, 0] = 1; T[_, _] = 0;
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 06 2018 *)
PROG
(PARI) T(n, k) = {if(n==0, k==0, if(k<=n, (k+1)*binomial(3*n-2*k, n-k)/(2*n-k+1)-(k+2)*binomial(3*n-2*k-2, n-k-1)/(2*n-k)))} \\ Andrew Howroyd, Nov 06 2017
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Jan 22 2005
STATUS
approved