login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A102592
a(n) = Sum_{k=0..n} binomial(2n+1, 2k)*5^(n-k).
1
1, 8, 80, 832, 8704, 91136, 954368, 9994240, 104660992, 1096024064, 11477712896, 120196169728, 1258710630400, 13181388849152, 138037296103424, 1445545331654656, 15137947242201088, 158526641599938560
OFFSET
0,2
COMMENTS
In general, Sum_{k=0..n} binomial(2n+1,2k)*r^(n-k) has g.f. (1-(r-1)x)/(1-2(r+1)+(r-1)^2x^2) and a(n) = ((sqrt(r)-1)^(2n+1) + (sqrt(r)+1)^(2n+1))/(2*sqrt(r)).
FORMULA
G.f.:(1-4x)/(1-12x+16x^2);
a(n) = 12*a(n-1) - 16*a(n-2);
a(n) = sqrt(5)*(sqrt(5)-1)^(2n+1)/10 + sqrt(5)*(sqrt(5)+1)^(2n+1)/10.
a(n) = Sum_{k=0..n} binomial(2n+1, k+1)*5^k. - Paul Barry, May 27 2005
a(n) = 4^(n+1)*A001519(n+1). - N. J. A. Sloane, Apr 13 2011
a(n) = 5^n* 2F1(-n-1/2, -n ; 1/2 ; 1/5). - R. J. Mathar, Aug 23 2024
CROSSREFS
Sequence in context: A299871 A136949 A346178 * A345081 A320759 A233123
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jan 22 2005
STATUS
approved