login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320759
Number of ordered set partitions of [n] where the maximal block size equals three.
2
1, 8, 80, 860, 10290, 136080, 1977360, 31365600, 539847000, 10026139200, 199937337600, 4262167509600, 96744738090000, 2329950823200000, 59348032327584000, 1594257675506496000, 45047749044458160000, 1335740755933584000000, 41473196779273459200000
OFFSET
3,2
LINKS
FORMULA
E.g.f.: 1/(1-Sum_{i=1..3} x^i/i!) - 1/(1-Sum_{i=1..2} x^i/i!).
a(n) = A189886(n) - A080599(n).
MAPLE
b:= proc(n, k) option remember; `if`(n=0, 1, add(
b(n-i, k)*binomial(n, i), i=1..min(n, k)))
end:
a:= n-> (k-> b(n, k) -b(n, k-1))(3):
seq(a(n), n=3..25);
MATHEMATICA
b[n_, k_] := b[n, k] = If[n == 0, 1, Sum[b[n - i, k] Binomial[n, i], {i, 1, Min[n, k]}]];
a[n_] := With[{k = 3}, b[n, k] - b[n, k-1]];
a /@ Range[3, 25] (* Jean-François Alcover, Dec 14 2020, after Alois P. Heinz *)
CROSSREFS
Column k=3 of A276922.
Sequence in context: A346178 A102592 A345081 * A233123 A269796 A328128
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 20 2018
STATUS
approved