Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Aug 23 2024 08:17:23
%S 1,8,80,832,8704,91136,954368,9994240,104660992,1096024064,
%T 11477712896,120196169728,1258710630400,13181388849152,
%U 138037296103424,1445545331654656,15137947242201088,158526641599938560
%N a(n) = Sum_{k=0..n} binomial(2n+1, 2k)*5^(n-k).
%C In general, Sum_{k=0..n} binomial(2n+1,2k)*r^(n-k) has g.f. (1-(r-1)x)/(1-2(r+1)+(r-1)^2x^2) and a(n) = ((sqrt(r)-1)^(2n+1) + (sqrt(r)+1)^(2n+1))/(2*sqrt(r)).
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (12,-16).
%F G.f.:(1-4x)/(1-12x+16x^2);
%F a(n) = 12*a(n-1) - 16*a(n-2);
%F a(n) = sqrt(5)*(sqrt(5)-1)^(2n+1)/10 + sqrt(5)*(sqrt(5)+1)^(2n+1)/10.
%F a(n) = Sum_{k=0..n} binomial(2n+1, k+1)*5^k. - _Paul Barry_, May 27 2005
%F a(n) = 4^(n+1)*A001519(n+1). - _N. J. A. Sloane_, Apr 13 2011
%F a(n) = 5^n* 2F1(-n-1/2, -n ; 1/2 ; 1/5). - _R. J. Mathar_, Aug 23 2024
%Y Cf. A066443, A102591.
%K easy,nonn
%O 0,2
%A _Paul Barry_, Jan 22 2005