login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A080879
a(n)*a(n+3) - a(n+1)*a(n+2) = 2^n, given a(0)=1, a(1)=1, a(2)=6.
8
1, 1, 6, 7, 44, 52, 328, 388, 2448, 2896, 18272, 21616, 136384, 161344, 1017984, 1204288, 7598336, 8988928, 56714752, 67094272, 423324672, 500798464, 3159738368, 3738010624, 23584608256, 27900891136, 176037912576, 208255086592, 1313964867584, 1554437128192
OFFSET
0,3
FORMULA
a(2n) = A080876(2n+3)/2, a(2n+1) = A080876(2n+4)/4.
G.f.: (-x^3 - 2*x^2 + x + 1)/(4*x^4 - 8*x^2 + 1).
a(n) = ((9/16)*sqrt(3) - 7/16)*(1 + sqrt(3))^n + (-(9/16)*sqrt(3) - 7/16)*(1 - sqrt(3))^n + (-(19/48)*sqrt(3) + 15/16)*(-(1 + sqrt(3)))^n + ((19/48)*sqrt(3) + 15/16)*(-(1 - sqrt(3)))^n. - Richard Choulet, Dec 06 2008
a(n+4) = 8*a(n+2) - 4*a(n). - Richard Choulet, Dec 06 2008
MAPLE
a:= n-> (<<0|1>, <-4|8>>^floor(n/2). <<1, 6+(n mod 2)>>)[1, 1]:
seq(a(n), n=0..30); # Alois P. Heinz, Mar 18 2023
MATHEMATICA
LinearRecurrence[{0, 8, 0, -4}, {1, 1, 6, 7}, 30] (* Harvey P. Dale, Mar 10 2015 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 22 2003
STATUS
approved