login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A102305
a(n) = n^2 + 2*n + 3.
8
6, 11, 18, 27, 38, 51, 66, 83, 102, 123, 146, 171, 198, 227, 258, 291, 326, 363, 402, 443, 486, 531, 578, 627, 678, 731, 786, 843, 902, 963, 1026, 1091, 1158, 1227, 1298, 1371, 1446, 1523, 1602, 1683, 1766, 1851, 1938, 2027, 2118, 2211, 2306, 2403
OFFSET
1,1
COMMENTS
Essentially a duplicate of A059100.
FORMULA
a(n) = (1/5) * A027578(n-1).
a(n) = 2*n + a(n-1) + 1 (with a(1)=6). - Vincenzo Librandi, Nov 16 2010
a(n) = A059100(n+1). - Reinhard Zumkeller, Mar 21 2008
a(n) = A010000(n+1) for n >= 1. - Georg Fischer, Nov 02 2018
From Amiram Eldar, Sep 14 2022: (Start)
Sum_{n>=1} 1/a(n) = Pi * coth(sqrt(2)*Pi)/(2*sqrt(2)) - 7/12.
Sum_{n>=1} (-1)^(n+1)/a(n) = cosech(sqrt(2)*Pi)*Pi/(2*sqrt(2)) + 1/12. (End)
From G. C. Greubel, Feb 03 2024: (Start)
G.f.: (3 - 3*x + 2*x^2)/(1-x)^3.
E.g.f.: (3 + 3*x + x^2)*exp(x). (End)
MAPLE
A102305:=n->n^2+2*n+3: seq(A102305(n), n=1..100); # Wesley Ivan Hurt, Jan 22 2017
MATHEMATICA
Table[n^2+2n+3, {n, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {6, 11, 18}, 50] (* Harvey P. Dale, Aug 05 2015 *)
PROG
(PARI) a(n)=n^2+2*n+3 \\ Charles R Greathouse IV, Oct 16 2015
(Magma) [(n+1)^2+2: n in [1..60]]; // G. C. Greubel, Feb 03 2024
(SageMath) [n^2+2*n+3 for n in range(1, 61)] # G. C. Greubel, Feb 03 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Ralf Stephan, Jan 03 2005
STATUS
approved