login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160842
Number of lines through at least 2 points of a 2 X n grid of points.
4
0, 1, 6, 11, 18, 27, 38, 51, 66, 83, 102, 123, 146, 171, 198, 227, 258, 291, 326, 363, 402, 443, 486, 531, 578, 627, 678, 731, 786, 843, 902, 963, 1026, 1091, 1158, 1227, 1298, 1371, 1446, 1523, 1602, 1683, 1766, 1851, 1938, 2027, 2118, 2211, 2306, 2403, 2502
OFFSET
0,3
FORMULA
a(n) = n^2 + 2 = A059100(n) for n > 1.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 4. - Colin Barker, May 24 2015
G.f.: -x*(2*x^3 - 4*x^2 + 3*x + 1) / (x-1)^3. - Colin Barker, May 24 2015
Sum_{n>=1} 1/a(n) = Pi * coth(sqrt(2)*Pi) / 2^(3/2) - 1/4. - Vaclav Kotesovec, May 01 2018
MATHEMATICA
a[n_]:=If[n<2, n, n^2+2] Table[a[n], {n, 0, 50}]
Join[{0, 1}, Range[2, 50]^2+2] (* Harvey P. Dale, Feb 06 2015 *)
PROG
(PARI) Vec(-x*(2*x^3-4*x^2+3*x+1) / (x-1)^3 + O(x^100)) \\ Colin Barker, May 24 2015
(Magma) [0, 1] cat [n^2 + 2: n in [2..100]]; // G. C. Greubel, Apr 30 2018
CROSSREFS
Sequence in context: A073945 A083500 A102305 * A365351 A007745 A188556
KEYWORD
nonn,easy
AUTHOR
Seppo Mustonen, May 28 2009
STATUS
approved