OFFSET
0,3
COMMENTS
We may assume n <= m since T(m,n)=T(n,m).
LINKS
M. A. Alekseyev, M. Basova, and N. Yu. Zolotykh, On the minimal teaching sets of two-dimensional threshold functions, SIAM J. Disc. Math. 29(1), 2015, pp. 157-165.
Les Reid, Problem #7: How Many Lines Does the Lattice of Points Generate?, Problems from the 04-05 academic year, Challenge Archive, Missouri State University's Problem Corner.
FORMULA
T(0, 0) = 0; T(m, 0) = 1, m >= 1.
When both m,n -> +oo, T(m,n) / 2Cmn -> 9/(2*pi^2). - Dan Dima, Mar 18 2006
T(n,m) = A295707(n,m). - R. J. Mathar, Dec 17 2017
EXAMPLE
Triangle begins
0,
1, 6,
1, 11, 20,
1, 18, 35, 62,
1, 27, 52, 93, 140,
1, 38, 75, 136, 207, 306,
1, 51, 100, 181, 274, 405, 536,
1, 66, 131, 238, 361, 534, 709, 938,
1, 83, 164, 299, 454, 673, 894, 1183, 1492,
1, 102, 203, 370, 563, 836, 1111, 1470, 1855, 2306,
...
MAPLE
VR := proc(m, n, q) local a, i, j; a:=0;
for i from -m+1 to m-1 do for j from -n+1 to n-1 do
if gcd(i, j)=q then a:=a+(m-abs(i))*(n-abs(j)); fi; od: od: a; end;
LL:=(m, n)->(VR(m, n, 1)-VR(m, n, 2))/2;
for m from 1 to 12 do lprint([seq(LL(m, n), n=1..m)]); od: # N. J. A. Sloane, Feb 10 2020
MATHEMATICA
VR[m_, n_, q_] := Sum[If[GCD[i, j] == q, (m - Abs[i])(n - Abs[j]), 0], {i, -m + 1, m - 1}, {j, -n + 1, n - 1}];
LL[m_, n_] := (1/2)(VR[m, n, 1] - VR[m, n, 2]);
Table[LL[m, n], {m, 1, 10}, {n, 1, m}] // Flatten (* Jean-François Alcover, Jun 04 2023, after N. J. A. Sloane *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Dan Dima, May 23 2005
EXTENSIONS
T(3,3) corrected and sequence extended by R. J. Mathar, Dec 17 2017
STATUS
approved