|
|
A107350
|
|
Number of isogons with a certain property.
|
|
3
|
|
|
1, 4, 34, 346, 3965, 48396, 615966, 8082457, 108545916, 1484716135, 20612084010, 289688970195, 4113620233260, 58930127470164, 850641610106596, 12360278974175769, 180648953113093368, 2653875476976308643, 39167191622334514398, 580439539153823110678, 8633956582855204662785
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
This and A060005 appear in the reference as incidental sequences when computing A007219.
|
|
LINKS
|
Seiichi Manyama, Table of n, a(n) for n = 1..200
L. Sallows, M. Gardner, R. K. Guy and D. E. Knuth, Serial isogons of 90 degrees, Math. Mag. 64 (1991), 315-324.
|
|
FORMULA
|
product[ {1+x^(2i+1)},i=0,1,...,4n-1] = 1+...+2*a(n)*x^(8n^2)+.... (g.f.). - R. J. Mathar, May 08 2007
a(n) = A292476(2*n)/2. - Seiichi Manyama, Sep 18 2017
|
|
MAPLE
|
A107350 := proc(n) res := 1 ; for i from 0 to 4*n-1 do res := taylor(res*(1+x^(2*i+1)), x=0, 8*n^2+1) ; od ; coeftayl(res, x=0, 8*n^2)/2 ; end: for n from 1 to 25 do printf("%d, ", A107350(n)) ; od ; # R. J. Mathar, May 08 2007
|
|
MATHEMATICA
|
a[n_] := SeriesCoefficient[Product[x^(2k - 1) + 1/x^(2k - 1), {k, 1, 4n}], {x, 0, 0}]/2;
Table[a[n], {n, 1, 25}] (* Jean-François Alcover, Mar 10 2023 *)
|
|
CROSSREFS
|
Cf. A007219, A060005, A292476.
Sequence in context: A332617 A333095 A214693 * A206180 A274344 A199752
Adjacent sequences: A107347 A107348 A107349 * A107351 A107352 A107353
|
|
KEYWORD
|
nonn,easy,changed
|
|
AUTHOR
|
N. J. A. Sloane, May 23 2005
|
|
EXTENSIONS
|
More terms from R. J. Mathar, May 08 2007
|
|
STATUS
|
approved
|
|
|
|