OFFSET
0,2
COMMENTS
Lehmer quotes A. E. Western as computing a(5) = 1197, a(8) = 7838 and a(10) = 20193.
Number of integers of the form 2^a*3^b*5^c*7^d*11^e <= 10^n.
LINKS
David A. Corneth, Table of n, a(n) for n = 0..119
D. H. Lehmer, The lattice points of an n-dimensional tetrahedron, Duke Math. J., 7 (1941), 341-353.
FORMULA
Does a(n)/(a(n-1) - a(n-2)) tend to c*n + d for large n where c ~= 0.20 and d ~= 1.37? - David A. Corneth, Nov 14 2019
MATHEMATICA
fQ[n_] := FactorInteger[n][[ -1, 1]] < 13; c = 1; k = 1; Do[ While[k <= 10^n, If[ fQ[k], c++ ]; k++ ]; Print[c], {n, 0, 9}] (* Or *)
n = 32; t = Select[ Flatten[ Table[11^e*Select[ Flatten[ Table[7^d*Select[ Flatten[ Table[5^c*Select[ Flatten[ Table[2^a*3^b, {a, 0, Log[2, 10^n]}, {b, 0, Log[3, 10^n]}]], # <= 10^n &], {c, 0, Log[5, 10^n]}]], # <= 10^n &], {d, 0, Log[7, 10^n]}]], # <= 10^n &], {e, 0, Log[11, 10^n]}]], # <= 10^n &]; Table[ Length[ Select[t, # <= 10^n &]], {n, 0, 32}] (* Robert G. Wilson v, May 24 2005 *)
PROG
(Python)
from sympy import integer_log, prevprime
def A107352(n):
def g(x, m): return sum((x//3**i).bit_length() for i in range(integer_log(x, 3)[0]+1)) if m==3 else sum(g(x//(m**i), prevprime(m))for i in range(integer_log(x, m)[0]+1))
return g(10**n, 11) # Chai Wah Wu, Oct 22 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, May 23 2005
EXTENSIONS
More terms from Robert G. Wilson v and Don Reble, May 26 2005
STATUS
approved