login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A107352
Number of positive integers <= 10^n that are divisible by no prime exceeding 11.
5
1, 10, 55, 192, 522, 1197, 2432, 4520, 7838, 12867, 20193, 30524, 44696, 63694, 88658, 120895, 161885, 213294, 276997, 355082, 449849, 563834, 699826, 860861, 1050260, 1271598, 1528765, 1825937, 2167611, 2558606, 3004075, 3509523
OFFSET
0,2
COMMENTS
Lehmer quotes A. E. Western as computing a(5) = 1197, a(8) = 7838 and a(10) = 20193.
Number of integers of the form 2^a*3^b*5^c*7^d*11^e <= 10^n.
LINKS
D. H. Lehmer, The lattice points of an n-dimensional tetrahedron, Duke Math. J., 7 (1941), 341-353.
FORMULA
Does a(n)/(a(n-1) - a(n-2)) tend to c*n + d for large n where c ~= 0.20 and d ~= 1.37? - David A. Corneth, Nov 14 2019
MATHEMATICA
fQ[n_] := FactorInteger[n][[ -1, 1]] < 13; c = 1; k = 1; Do[ While[k <= 10^n, If[ fQ[k], c++ ]; k++ ]; Print[c], {n, 0, 9}] (* Or *)
n = 32; t = Select[ Flatten[ Table[11^e*Select[ Flatten[ Table[7^d*Select[ Flatten[ Table[5^c*Select[ Flatten[ Table[2^a*3^b, {a, 0, Log[2, 10^n]}, {b, 0, Log[3, 10^n]}]], # <= 10^n &], {c, 0, Log[5, 10^n]}]], # <= 10^n &], {d, 0, Log[7, 10^n]}]], # <= 10^n &], {e, 0, Log[11, 10^n]}]], # <= 10^n &]; Table[ Length[ Select[t, # <= 10^n &]], {n, 0, 32}] (* Robert G. Wilson v, May 24 2005 *)
PROG
(Python)
from sympy import integer_log, prevprime
def A107352(n):
def g(x, m): return sum((x//3**i).bit_length() for i in range(integer_log(x, 3)[0]+1)) if m==3 else sum(g(x//(m**i), prevprime(m))for i in range(integer_log(x, m)[0]+1))
return g(10**n, 11) # Chai Wah Wu, Oct 22 2024
CROSSREFS
Row 5 of A253635.
Sequence in context: A321780 A074977 A069155 * A127761 A337898 A357730
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, May 23 2005
EXTENSIONS
More terms from Robert G. Wilson v and Don Reble, May 26 2005
STATUS
approved