login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A102290
Total number of even lists in all sets of lists, cf. A000262.
1
0, 0, 2, 6, 60, 380, 3990, 37002, 450296, 5373720, 76018410, 1096730030, 17814654132, 299645294676, 5511836578430, 105550556136690, 2171244984679920, 46545825736022192, 1059273836225051346, 25100215228045842390, 626204775725372971820, 16239127347086448236460
OFFSET
0,3
FORMULA
E.g.f.: x^2/(1-x^2)*exp(x/(1-x)).
Recurrence: (n-2)*a(n) = (n-2)*n*a(n-1) + (n-1)^2*n*a(n-2) - (n-3)*(n-2)*(n-1)*n*a(n-3). - Vaclav Kotesovec, Sep 29 2013
a(n) ~ sqrt(2)/4 * n^(n+1/4)*exp(2*sqrt(n)-n-1/2) * (1 - 41/(48*sqrt(n))). - Vaclav Kotesovec, Sep 29 2013
a(n) = n! * Sum_{j=0..n-2} (-1)^(n+j)*LaguerreL(j, -1) for n>1 with a(0)=a(1)=0. - G. C. Greubel, Mar 09 2021
MAPLE
Gser:=series(x^2*exp(x/(1-x))/(1-x^2), x=0, 22):seq(n!*coeff(Gser, x^n), n=1..21); # Emeric Deutsch
# second Maple program:
b:= proc(n) option remember; `if`(n=0, [1, 0], add(
(p-> p+`if`(j::even, [0, p[1]], 0))(b(n-j)*
binomial(n-1, j-1)*j!), j=1..n))
end:
a:= n-> b(n, 0)[2]:
seq(a(n), n=0..25); # Alois P. Heinz, May 10 2016
MATHEMATICA
Rest[CoefficientList[Series[x^2/(1-x^2)*E^(x/(1-x)), {x, 0, 20}], x]* Range[0, 20]!] (* Vaclav Kotesovec, Sep 29 2013 *)
Table[If[n<2, 0, n!*Sum[(-1)^(n-j)*LaguerreL[j, -1], {j, 0, n-2}]], {n, 0, 30}] (* G. C. Greubel, Mar 09 2021 *)
PROG
(Sage) [0, 0]+[factorial(n)*sum((-1)^(n+j)*gen_laguerre(j, 0, -1) for j in (0..n-2)) for n in (2..30)] # G. C. Greubel, Mar 09 2021
(Magma)
l:= func< n, b | Evaluate(LaguerrePolynomial(n), b) >;
[0, 0]cat[Factorial(n)*(&+[(-1)^(n+j)*l(j, -1): j in [0..n-2]]): n in [2..30]]; // G. C. Greubel, Mar 09 2021
CROSSREFS
KEYWORD
easy,nonn,changed
AUTHOR
Vladeta Jovovic, Feb 19 2005
EXTENSIONS
More terms from Emeric Deutsch, Mar 27 2005
a(0)=0 prepended by Alois P. Heinz, May 10 2016
STATUS
approved