OFFSET
0,3
LINKS
FORMULA
E.g.f.: x^2/(1-x^2)*exp(x/(1-x)).
Recurrence: (n-2)*a(n) = (n-2)*n*a(n-1) + (n-1)^2*n*a(n-2) - (n-3)*(n-2)*(n-1)*n*a(n-3). - Vaclav Kotesovec, Sep 29 2013
a(n) ~ sqrt(2)/4 * n^(n+1/4)*exp(2*sqrt(n)-n-1/2) * (1 - 41/(48*sqrt(n))). - Vaclav Kotesovec, Sep 29 2013
a(n) = n! * Sum_{j=0..n-2} (-1)^(n+j)*LaguerreL(j, -1) for n>1 with a(0)=a(1)=0. - G. C. Greubel, Mar 09 2021
MAPLE
Gser:=series(x^2*exp(x/(1-x))/(1-x^2), x=0, 22):seq(n!*coeff(Gser, x^n), n=1..21); # Emeric Deutsch
# second Maple program:
b:= proc(n) option remember; `if`(n=0, [1, 0], add(
(p-> p+`if`(j::even, [0, p[1]], 0))(b(n-j)*
binomial(n-1, j-1)*j!), j=1..n))
end:
a:= n-> b(n, 0)[2]:
seq(a(n), n=0..25); # Alois P. Heinz, May 10 2016
MATHEMATICA
Rest[CoefficientList[Series[x^2/(1-x^2)*E^(x/(1-x)), {x, 0, 20}], x]* Range[0, 20]!] (* Vaclav Kotesovec, Sep 29 2013 *)
Table[If[n<2, 0, n!*Sum[(-1)^(n-j)*LaguerreL[j, -1], {j, 0, n-2}]], {n, 0, 30}] (* G. C. Greubel, Mar 09 2021 *)
PROG
(Sage) [0, 0]+[factorial(n)*sum((-1)^(n+j)*gen_laguerre(j, 0, -1) for j in (0..n-2)) for n in (2..30)] # G. C. Greubel, Mar 09 2021
(Magma)
l:= func< n, b | Evaluate(LaguerrePolynomial(n), b) >;
[0, 0]cat[Factorial(n)*(&+[(-1)^(n+j)*l(j, -1): j in [0..n-2]]): n in [2..30]]; // G. C. Greubel, Mar 09 2021
CROSSREFS
KEYWORD
easy,nonn,changed
AUTHOR
Vladeta Jovovic, Feb 19 2005
EXTENSIONS
More terms from Emeric Deutsch, Mar 27 2005
a(0)=0 prepended by Alois P. Heinz, May 10 2016
STATUS
approved