login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A102287
Total number of even blocks in all partitions of n-set.
3
0, 1, 3, 13, 55, 256, 1274, 6791, 38553, 232171, 1477355, 9898780, 69621864, 512585529, 3940556611, 31560327945, 262805569159, 2271094695388, 20333574916690, 188322882941471, 1801737999086129, 17783472151154007, 180866601699482803, 1893373126840572056
OFFSET
1,3
LINKS
FORMULA
E.g.f: (cosh(x)-1)*exp(exp(x)-1).
EXAMPLE
a(3)=3 because in the 5 (=A000110(3)) partitions 123, (12)/3, (13)/2, 1/(23) and 1/2/3 of {1,2,3} we have 3 blocks of even size (shown between parentheses).
MAPLE
G:=(cosh(x)-1)*exp(exp(x)-1): Gser:=series(G, x=0, 28): seq(n!*coeff(Gser, x^n), n=1..25); # Emeric Deutsch, Jun 22 2005
# second Maple program:
with(combinat):
b:= proc(n, i) option remember; `if`(n=0 or i=1, [1, 0],
add((p->(p+[0, `if`(i::odd, 0, j)*p[1]]))(
b(n-i*j, i-1))*multinomial(n, n-i*j, i$j)/j!, j=0..n/i))
end:
a:= n-> b(n$2)[2]:
seq(a(n), n=1..30); # Alois P. Heinz, Sep 16 2015
MATHEMATICA
Range[0, nn]! CoefficientList[
D[Series[Exp[y (Cosh[x] - 1) + Sinh[x]], {x, 0, nn}], y] /. y -> 1, x] (* Geoffrey Critzer, Aug 28 2012 *)
CROSSREFS
Sequence in context: A151318 A151212 A151213 * A151214 A151215 A151216
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Feb 19 2005
EXTENSIONS
More terms from Emeric Deutsch, Jun 22 2005
STATUS
approved