login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A102289
Total number of odd lists in all sets of lists, cf. A000262.
1
0, 1, 2, 15, 76, 665, 5286, 56287, 597080, 7601841, 99702730, 1484554511, 23049638052, 393702612745, 7036703742446, 135702811542495, 2737989749177776, 58848546456947297, 1321063959370833810, 31310238786268648591, 773291778432688011260, 20031956775840631151481
OFFSET
0,3
LINKS
FORMULA
E.g.f.: x/(1-x^2)*exp(x/(1-x)).
a(n) = n*a(n-1) + n^2*a(n-2) - (n-2)^2*n*a(n-3). - Vaclav Kotesovec, Sep 29 2013
a(n) ~ sqrt(2)/4 * n^(n+1/4)*exp(2*sqrt(n)-n-1/2) * (1 + 7/(48*sqrt(n))). - Vaclav Kotesovec, Sep 29 2013
MAPLE
G:=(x/(1-x^2))*exp(x/(1-x)): Gser:=series(G, x=0, 25): seq(n!*coeff(Gser, x^n), n=1..22); # Emeric Deutsch
# second Maple program:
b:= proc(n) option remember; `if`(n=0, [1, 0], add(
(p-> p+`if`(j::odd, [0, p[1]], 0))(b(n-j)*
binomial(n-1, j-1)*j!), j=1..n))
end:
a:= n-> b(n, 0)[2]:
seq(a(n), n=0..25); # Alois P. Heinz, May 10 2016
MATHEMATICA
Rest[CoefficientList[Series[x/(1-x^2)*E^(x/(1-x)), {x, 0, 20}], x]* Range[0, 20]!] (* Vaclav Kotesovec, Sep 29 2013 *)
nxt[{n_, a_, b_, c_}]:={n+1, b, c, (n+1)*c+(n+1)^2*b-(n-1)^2 (n+1)*a}; NestList[ nxt, {2, 0, 1, 2}, 30][[All, 2]] (* Harvey P. Dale, Jan 13 2019 *)
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Feb 19 2005
EXTENSIONS
More terms from Emeric Deutsch, Jun 24 2005
a(0)=0 pepended by Alois P. Heinz, May 10 2016
STATUS
approved