login
A092691
a(n) = n! * Sum_{k=1..floor(n/2)} 1/(2k).
9
0, 0, 1, 3, 18, 90, 660, 4620, 42000, 378000, 4142880, 45571680, 586776960, 7628100480, 113020427520, 1695306412800, 28432576972800, 483353808537600, 9056055981772800, 172065063653683200, 3562946373482496000, 74821873843132416000, 1697172166720622592000
OFFSET
0,4
COMMENTS
Stirling transform of -(-1)^n*a(n-1)=[1,0,1,-3,18,...] is A052856(n-2)=[1,1,2,4,14,76,...].
Number of cycles of even cardinality in all permutations of [n]. Example: a(3)=3 because among (1)(2)(3), (1)(23), (12)(3), (13)(2), (132), (123) we have three cycles of even length. - Emeric Deutsch, Aug 12 2004
REFERENCES
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, Exercise 3.3.13.
LINKS
N. J. A. Sloane and T. D. Noe, Table of n, a(n) for n = 0..200
FORMULA
a(2n+1) = (2n+1)*a(2n).
From Vladeta Jovovic, Mar 06 2004: (Start)
a(n) = n!*(Psi(floor(n/2)+1)+gamma)/2.
E.g.f.: log(1-x^2)/(2*x-2). (End)
a(n) = n!/2*h(floor(n/2)), where h(n) = Sum_{k=1..n} 1/k. - Gary Detlefs, Jul 19 2011
EXAMPLE
a(4)=4!*(1/2+1/4)=18, a(5)=5!*(1/2+1/4)=90.
MATHEMATICA
nn = 20; Range[0, nn]! CoefficientList[
D[Series[(1 - x^2)^(-y/2) ((1 + x)/(1 - x))^(1/2), {x, 0, nn}], y] /. y -> 1, x] (* Geoffrey Critzer, Aug 27 2012 *)
PROG
(PARI) a(n)=if(n<0, 0, n!*sum(k=1, n\2, 1/k)/2)
(PARI) {a(n)=if(n<0, 0, n!*polcoeff( log(1-x^2+x*O(x^n))/(2*x-2), n))}
CROSSREFS
A046674(n)=a(2n). Cf. A081358, A151883, A151884.
Sequence in context: A088336 A133594 A272492 * A064671 A363647 A058409
KEYWORD
nonn
AUTHOR
Michael Somos, Mar 04 2004
STATUS
approved