The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A092693 Sum of iterated phi(n). 27
 0, 1, 3, 3, 7, 3, 9, 7, 9, 7, 17, 7, 19, 9, 15, 15, 31, 9, 27, 15, 19, 17, 39, 15, 35, 19, 27, 19, 47, 15, 45, 31, 35, 31, 39, 19, 55, 27, 39, 31, 71, 19, 61, 35, 39, 39, 85, 31, 61, 35, 63, 39, 91, 27, 71, 39, 55, 47, 105, 31, 91, 45, 55, 63, 79, 35, 101, 63, 79, 39, 109, 39, 111 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Iannucci, Moujie and Cohen examine perfect totient numbers: n such that a(n) = n. LINKS T. D. Noe, Table of n, a(n) for n = 1..10000 C. Defant, On Arithmetic Functions Related to Iterates of the Schemmel Totient Functions, J. Int. Seq. 18 (2015) # 15.2.1 P. Erdos and M. V. Subbarao, On the iterates of some arithmetic functions, The theory of arithmetic functions (Proc. Conf., Western Michigan Univ., Kalamazoo, Mich. 1971), Lecture Notes in Math., 251 , pp. 119-125, Springer, Berlin, 1972. [alternate link] Douglas E. Iannucci, Deng Moujie and Graeme L. Cohen, On perfect totient numbers, J. Integer Sequences, 6 (2003), #03.4.5. FORMULA a(1) = 0, a(n) = phi(n) + a(phi(n)) a(n) = A053478(n) - n. - Vladeta Jovovic, Jul 02 2004 Erdős & Subbarao prove that a(n) ~ phi(n) for almost all n. In particular, a(n) < n for almost all n. The proportion of numbers up to N for which a(n) > n is at most 1/log log log log N. - Charles R Greathouse IV, Mar 22 2012 EXAMPLE a(100) = 71 because the iterations of phi (40, 16, 8, 4, 2, 1) sum to 71. MATHEMATICA nMax=100; a=Table[0, {nMax}]; Do[e=EulerPhi[n]; a[[n]]=e+a[[e]], {n, 2, nMax}]; a (* T. D. Noe *) Table[Plus @@ FixedPointList[EulerPhi, n] - (n + 1), {n, 72}] (* Alonso del Arte, Jan 29 2007 *) PROG (Haskell) a092693 1 = 0 a092693 n = (+ 1) \$ sum \$ takeWhile (/= 1) \$ iterate a000010 \$ a000010 n -- Reinhard Zumkeller, Oct 27 2011 (PARI) a(n)=my(k); while(n>1, k+=n=eulerphi(n)); k \\ Charles R Greathouse IV, Mar 22 2012 (Python) from sympy import totient from math import prod def f(n): m = n while m > 1: m = totient(m) yield m def A092693(n): return sum(f(n)) # Chai Wah Wu, Nov 14 2021 CROSSREFS Cf. A003434 (iterations of phi(n) needed to reach 1), A092694 (iterated phi product). Cf. A082897 and A091847 (perfect totient numbers). Sequence in context: A145501 A370296 A182139 * A134661 A135434 A204204 Adjacent sequences: A092690 A092691 A092692 * A092694 A092695 A092696 KEYWORD nonn AUTHOR T. D. Noe, Mar 04 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 21 22:50 EST 2024. Contains 370239 sequences. (Running on oeis4.)