OFFSET
1,3
COMMENTS
Iannucci, Moujie and Cohen examine perfect totient numbers: n such that a(n) = n.
LINKS
T. D. Noe, Table of n, a(n) for n = 1..10000
C. Defant, On Arithmetic Functions Related to Iterates of the Schemmel Totient Functions, J. Int. Seq. 18 (2015) # 15.2.1
P. Erdos and M. V. Subbarao, On the iterates of some arithmetic functions, The theory of arithmetic functions (Proc. Conf., Western Michigan Univ., Kalamazoo, Mich. 1971), Lecture Notes in Math., 251 , pp. 119-125, Springer, Berlin, 1972. [alternate link]
Douglas E. Iannucci, Deng Moujie and Graeme L. Cohen, On perfect totient numbers, J. Integer Sequences, 6 (2003), #03.4.5.
FORMULA
a(1) = 0, a(n) = phi(n) + a(phi(n))
a(n) = A053478(n) - n. - Vladeta Jovovic, Jul 02 2004
Erdős & Subbarao prove that a(n) ~ phi(n) for almost all n. In particular, a(n) < n for almost all n. The proportion of numbers up to N for which a(n) > n is at most 1/log log log log N. - Charles R Greathouse IV, Mar 22 2012
EXAMPLE
a(100) = 71 because the iterations of phi (40, 16, 8, 4, 2, 1) sum to 71.
MATHEMATICA
nMax=100; a=Table[0, {nMax}]; Do[e=EulerPhi[n]; a[[n]]=e+a[[e]], {n, 2, nMax}]; a (* T. D. Noe *)
Table[Plus @@ FixedPointList[EulerPhi, n] - (n + 1), {n, 72}] (* Alonso del Arte, Jan 29 2007 *)
PROG
(Haskell)
a092693 1 = 0
a092693 n = (+ 1) $ sum $ takeWhile (/= 1) $ iterate a000010 $ a000010 n
-- Reinhard Zumkeller, Oct 27 2011
(PARI) a(n)=my(k); while(n>1, k+=n=eulerphi(n)); k \\ Charles R Greathouse IV, Mar 22 2012
(Python)
from sympy import totient
from math import prod
def f(n):
m = n
while m > 1:
m = totient(m)
yield m
def A092693(n): return sum(f(n)) # Chai Wah Wu, Nov 14 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
T. D. Noe, Mar 04 2004
STATUS
approved