login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272492
Number of ordered set partitions of [n] with nondecreasing block sizes and maximal block size equal to two.
2
1, 3, 18, 90, 630, 4410, 37800, 340200, 3515400, 38669400, 471517200, 6129723600, 86497210800, 1297458162000, 20841060240000, 354298024080000, 6389869069584000, 121407512322096000, 2430526127309280000, 51041048673494880000, 1123451899297247520000
OFFSET
2,2
LINKS
FORMULA
E.g.f.: x^2 * Product_{i=1..2} (i-1)!/(i!-x^i).
Recurrence: 2*a(n) = 2*n*a(n-1) + (n-1)*n*a(n-2) - (n-2)*(n-1)*n*a(n-3). - Vaclav Kotesovec, May 07 2016
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1)+`if`(i>n, 0, binomial(n, i)*b(n-i, i))))
end:
a:= n-> (k-> b(n, k) -b(n, k-1))(2):
seq(a(n), n=2..30);
MATHEMATICA
Table[n!*(1 + ((-1)^n*(Sqrt[2] - 1) - Sqrt[2] - 1)/2^(n/2 + 1)), {n, 2, 20}] (* Vaclav Kotesovec, May 07 2016 *)
CROSSREFS
Column k=2 of A262071.
Sequence in context: A147518 A088336 A133594 * A092691 A064671 A363647
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 01 2016
STATUS
approved