login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A147518 Expansion of (1-x)/(1-4*x-6*x^2). 2
1, 3, 18, 90, 468, 2412, 12456, 64296, 331920, 1713456, 8845344, 45662112, 235720512, 1216854720, 6281741952, 32428096128, 167402836224, 864179921664, 4461136704000, 23029626345984, 118885325607936, 613719060507648 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Binomial transform of [1,2,13,44,205,...] = A002534(n+1).

a(n) is the number of compositions of n when there are 3 types of 1 and 9 types of other natural numbers. - Milan Janjic, Aug 13 2010

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (4,6).

FORMULA

a(n) = 4*a(n-1) + 6*a(n-2) with a(0)=1, a(1)=3.

a(n) = Sum_{k=0..n} A122016(n,k)*3^k.

a(n) = (r^n + s^n)/2 + (r^n - s^n)/(r - s), where r = 2 + sqrt(10) and s = 2 - sqrt(10). - Paolo P. Lava, Nov 18 2008

a(n) = ((10+sqrt(10))/20)*(2+sqrt(10))^n + ((10-sqrt(10))/20)*(2-sqrt(10))^n. - Richard Choulet, Nov 20 2008

MAPLE

seq(coeff(series((1-x)/(1-4*x-6*x^2), x, n+1), x, n), n = 0..30); # G. C. Greubel, Jan 09 2020

MATHEMATICA

CoefficientList[Series[(1-x)/(1-4x-6x^2), {x, 0, 30}], x] (* or *) LinearRecurrence[{4, 6}, {1, 3}, 30] (* Harvey P. Dale, Aug 22 2016 *)

PROG

(PARI) my(x='x+O('x^30)); Vec((1-x)/(1-4*x-6*x^2)) \\ G. C. Greubel, Jan 09 2020

(MAGMA) I:=[1, 3]; [n le 2 select I[n] else 4*Self(n-1) + 6*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 09 2020

(Sage)

def A147518_list(prec):

    P.<x> = PowerSeriesRing(ZZ, prec)

    return P( (1-x)/(1-4*x-6*x^2) ).list()

A147518_list(30) # G. C. Greubel, Jan 09 2020

(GAP) a:=[1, 3];; for n in [3..30] do a[n]:=4*a[n-1]+6*a[n-2]; od; a; # G. C. Greubel, Jan 09 2020

CROSSREFS

Cf. A026150, A122117.

Sequence in context: A124811 A006568 A181955 * A088336 A133594 A272492

Adjacent sequences:  A147515 A147516 A147517 * A147519 A147520 A147521

KEYWORD

nonn

AUTHOR

Philippe Deléham, Nov 06 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 24 06:13 EDT 2021. Contains 347623 sequences. (Running on oeis4.)