login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A151883
Let g be a permutation of [1..n] having say j_i cycles of length i, with Sum_i i*j_i = n; sequence gives Sum_g Sum_{i even} (j_i)^2.
4
0, 1, 3, 24, 120, 840, 5880, 54600, 491400, 5276880, 58045680, 749770560, 9747017280, 142685262720, 2140278940800, 35879056012800, 609943952217600, 11334678568012800, 215358892792243200, 4453151976335462400, 93516191503044710400, 2108447155238693068800
OFFSET
1,3
LINKS
N. J. A. Sloane and Alois P. Heinz, Table of n, a(n) for n = 1..450 (first 30 terms from N. J. A. Sloane)
MAPLE
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, 0,
add(multinomial(n, n-i*j, i$j)/j!*(i-1)!^j*(p-> p+
`if`(i::even, [0, p[1]*j^2], 0))(b(n-i*j, i-1)), j=0..n/i)))
end:
a:= n-> b(n$2)[2]:
seq(a(n), n=1..30); # Alois P. Heinz, Oct 21 2015
MATHEMATICA
multinomial[n_, k_] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[n==0, {1, 0}, If[i<1, {0, 0}, Sum[multinomial[n, Join[{n-i*j}, Array[i&, j]]]/j! * (i-1)!^j * Function[p, p+If[EvenQ[i], {0, p[[1]]*j^2}, {0, 0}]][b[n-i*j, i-1]], {j, 0, n/i}]]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Mar 13 2017, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jul 22 2009
STATUS
approved