login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Let g be a permutation of [1..n] having say j_i cycles of length i, with Sum_i i*j_i = n; sequence gives Sum_g Sum_{i even} (j_i)^2.
4

%I #11 Mar 13 2017 04:22:05

%S 0,1,3,24,120,840,5880,54600,491400,5276880,58045680,749770560,

%T 9747017280,142685262720,2140278940800,35879056012800,609943952217600,

%U 11334678568012800,215358892792243200,4453151976335462400,93516191503044710400,2108447155238693068800

%N Let g be a permutation of [1..n] having say j_i cycles of length i, with Sum_i i*j_i = n; sequence gives Sum_g Sum_{i even} (j_i)^2.

%H N. J. A. Sloane and Alois P. Heinz, <a href="/A151883/b151883.txt">Table of n, a(n) for n = 1..450</a> (first 30 terms from N. J. A. Sloane)

%p with(combinat):

%p b:= proc(n, i) option remember; `if`(n=0, [1,0], `if`(i<1, 0,

%p add(multinomial(n,n-i*j,i$j)/j!*(i-1)!^j*(p-> p+

%p `if`(i::even, [0, p[1]*j^2], 0))(b(n-i*j, i-1)), j=0..n/i)))

%p end:

%p a:= n-> b(n$2)[2]:

%p seq(a(n), n=1..30); # _Alois P. Heinz_, Oct 21 2015

%t multinomial[n_, k_] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[n==0, {1, 0}, If[i<1, {0, 0}, Sum[multinomial[n, Join[{n-i*j}, Array[i&, j]]]/j! * (i-1)!^j * Function[p, p+If[EvenQ[i], {0, p[[1]]*j^2}, {0, 0}]][b[n-i*j, i-1]], {j, 0, n/i}]]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 1, 30}] (* _Jean-François Alcover_, Mar 13 2017, after _Alois P. Heinz_ *)

%Y Cf. A000254, A151881, A151882, A151884, A092691, A081358.

%K nonn

%O 1,3

%A _N. J. A. Sloane_, Jul 22 2009