login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Total number of odd lists in all sets of lists, cf. A000262.
1

%I #14 Jan 13 2019 13:46:07

%S 0,1,2,15,76,665,5286,56287,597080,7601841,99702730,1484554511,

%T 23049638052,393702612745,7036703742446,135702811542495,

%U 2737989749177776,58848546456947297,1321063959370833810,31310238786268648591,773291778432688011260,20031956775840631151481

%N Total number of odd lists in all sets of lists, cf. A000262.

%H Alois P. Heinz, <a href="/A102289/b102289.txt">Table of n, a(n) for n = 0..444</a>

%F E.g.f.: x/(1-x^2)*exp(x/(1-x)).

%F a(n) = n*a(n-1) + n^2*a(n-2) - (n-2)^2*n*a(n-3). - _Vaclav Kotesovec_, Sep 29 2013

%F a(n) ~ sqrt(2)/4 * n^(n+1/4)*exp(2*sqrt(n)-n-1/2) * (1 + 7/(48*sqrt(n))). - _Vaclav Kotesovec_, Sep 29 2013

%p G:=(x/(1-x^2))*exp(x/(1-x)): Gser:=series(G,x=0,25): seq(n!*coeff(Gser,x^n),n=1..22); # _Emeric Deutsch_

%p # second Maple program:

%p b:= proc(n) option remember; `if`(n=0, [1, 0], add(

%p (p-> p+`if`(j::odd, [0, p[1]], 0))(b(n-j)*

%p binomial(n-1, j-1)*j!), j=1..n))

%p end:

%p a:= n-> b(n, 0)[2]:

%p seq(a(n), n=0..25); # _Alois P. Heinz_, May 10 2016

%t Rest[CoefficientList[Series[x/(1-x^2)*E^(x/(1-x)), {x, 0, 20}], x]* Range[0, 20]!] (* _Vaclav Kotesovec_, Sep 29 2013 *)

%t nxt[{n_,a_,b_,c_}]:={n+1,b,c,(n+1)*c+(n+1)^2*b-(n-1)^2 (n+1)*a}; NestList[ nxt,{2,0,1,2},30][[All,2]] (* _Harvey P. Dale_, Jan 13 2019 *)

%Y Cf. A052852, A066897, A066898, A059570, A059570, A081358, A092691.

%K easy,nonn

%O 0,3

%A _Vladeta Jovovic_, Feb 19 2005

%E More terms from _Emeric Deutsch_, Jun 24 2005

%E a(0)=0 pepended by _Alois P. Heinz_, May 10 2016