login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097766
Pell equation solutions (11*a(n))^2 - 122*b(n)^2 = -1 with b(n):=A097767(n), n >= 0.
4
1, 487, 236681, 115026479, 55902632113, 27168564180439, 13203866289061241, 6417051847919582687, 3118673994222628124641, 1515669144140349348992839, 736612085378215560982395113, 357991957824668622288095032079, 173983354890703572216453203195281
OFFSET
0,2
FORMULA
G.f.: (1 + x)/(1 - 2*243*x + x^2).
a(n) = S(n, 2*243) + S(n-1, 2*243) = S(2*n, 2*sqrt(122)), with Chebyshev polynomials of the second kind. See A049310 for the triangle of S(n, x)= U(n, x/2) coefficients. S(-1, x) := 0 =: U(-1, x).
a(n) = ((-1)^n)*T(2*n+1, 11*i)/(11*i) with the imaginary unit i and Chebyshev polynomials of the first kind. See the T-triangle A053120.
a(n) = 486*a(n-1) - a(n-2), n > 1; a(0)=1, a(1)=487. - Philippe Deléham, Nov 18 2008
a(n) = (1/11)*sinh((2*n + 1)*arcsinh(11)). - Bruno Berselli, Apr 03 2018
EXAMPLE
(x,y) = (11*1=11;1), (5357=11*487;485), (2603491=11*236681;235709), ... give the positive integer solutions to x^2 - 122*y^2 =-1.
MATHEMATICA
LinearRecurrence[{486, -1}, {1, 487}, 12] (* Ray Chandler, Aug 12 2015 *)
PROG
(PARI) x='x+O('x^99); Vec((1+x)/(1-2*243*x+x^2)) \\ Altug Alkan, Apr 05 2018
CROSSREFS
Cf. A097765 for S(n, 2*243).
Cf. similar sequences of the type (1/k)*sinh((2*n+1)*arcsinh(k)) listed in A097775.
Sequence in context: A236424 A235839 A203873 * A214806 A126819 A045011
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Aug 31 2004
STATUS
approved