login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097764
Numbers of the form (kp)^p for prime p and k=1,2,3,....
15
4, 16, 27, 36, 64, 100, 144, 196, 216, 256, 324, 400, 484, 576, 676, 729, 784, 900, 1024, 1156, 1296, 1444, 1600, 1728, 1764, 1936, 2116, 2304, 2500, 2704, 2916, 3125, 3136, 3364, 3375, 3600, 3844, 4096, 4356, 4624, 4900, 5184, 5476, 5776, 5832, 6084, 6400
OFFSET
1,1
COMMENTS
The polynomial x^n - n is reducible over the integers for n in this sequence.
A result of Vahlen shows that the polynomial x^n - n is reducible over the integers for n in this sequence and no other n.
The representation (k*p)^p is generally not unique, e.g. a(120) = 46656 = (108*2)^2 = (12*3)^3. - Reinhard Zumkeller, Feb 14 2015
This is also numbers of the form (km)^m for any m > 1, not just primes. Let m be > 1; then m has a prime factor, so let m=pj, p a prime and j an integer > 0. Then (km)^m = (kpj)^pj = (k^j p^j j^j)^p = ((k^j p^(j-1) j^j) p) ^ p. - Franklin T. Adams-Watters, Sep 13 2015
MATHEMATICA
nMax=10000; lst={}; n=1; While[p=Prime[n]; p^p<=nMax, k=1; While[(k*p)^p<=nMax, AppendTo[lst, (k*p)^p]; k++ ]; n++ ]; Union[lst]
PROG
(Haskell)
import Data.Set (singleton, deleteFindMin, insert)
a097764 n = a097764_list !! (n-1)
a097764_list = f 0 (singleton (4, 2, 2)) $
tail $ zip a051674_list a000040_list where
f m s ppps'@((pp, p) : ppps)
| pp < qq = f m (insert (pp, p, 2) s) ppps
| qq == m = f m (insert ((k * q) ^ q, q, k + 1) s') ppps'
| otherwise = qq : f qq (insert ((k * q) ^ q, q, k + 1) s') ppps'
where ((qq, q, k), s') = deleteFindMin s
-- Reinhard Zumkeller, Feb 14 2015
(PARI) is(n)=my(b, e=ispower(n, , &b), f); if(e==0, return(0)); f=factor(e)[, 1]; for(i=1, #f, if(b%f[i]==0, return(1))); 0 \\ Charles R Greathouse IV, Aug 29 2016
CROSSREFS
Cf. A084746 (least k such that n^k-k is prime).
Cf. A097792 (numbers of the form 4k^4 or (kp)^p).
Cf. A000040, A051674, A255134 (first differences).
Sequence in context: A046346 A340852 A328415 * A227993 A072873 A361078
KEYWORD
easy,nice,nonn
AUTHOR
T. D. Noe, Aug 24 2004
STATUS
approved