login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097765
Chebyshev U(n,x) polynomial evaluated at x=243=2*11^2+1.
2
1, 486, 236195, 114790284, 55787841829, 27112776338610, 13176753512722631, 6403875094406860056, 3112270119128221264585, 1512556874021221127728254, 735099528504194339854666859, 357256858296164427948240365220
OFFSET
0,2
COMMENTS
Used to form integer solutions of Pell equation a^2 - 122*b^2 =-1. See A097766 with A097767.
FORMULA
a(n) = 2*243*a(n-1) - a(n-2), n>=1, a(0)=1, a(-1):=0.
a(n) = S(n, 2*243)= U(n, 243), Chebyshev's polynomials of the second kind. See A049310.
G.f.: 1/(1-486*x+x^2).
a(n)= sum((-1)^k*binomial(n-k, k)*486^(n-2*k), k=0..floor(n/2)), n>=0.
a(n) = ((243+22*sqrt(122))^(n+1) - (243-22*sqrt(122))^(n+1))/(44*sqrt(122)), n>=0.
MATHEMATICA
LinearRecurrence[{486, -1}, {1, 486}, 12] (* Ray Chandler, Aug 12 2015 *)
CROSSREFS
Sequence in context: A206146 A128969 A223412 * A179428 A252076 A178813
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Aug 31 2004
STATUS
approved