This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A097768 Chebyshev U(n,x) polynomial evaluated at x=289=2*12^2+1. 2
 1, 578, 334083, 193099396, 111611116805, 64511032413894, 37287265124113927, 21551974730705435912, 12457004107082617843209, 7200126821919022407938890, 4161660846065087869170835211, 2405432768898798869358334813068 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Used to form integer solutions of Pell equation a^2 - 145*b^2 =-1. See A097769 with A097770. LINKS Tanya Khovanova, Recursive Sequences Index entries for linear recurrences with constant coefficients, signature (578, -1). FORMULA a(n) = 2*289*a(n-1) - a(n-2), n>=1, a(0)=1, a(-1):=0. a(n) = S(n, 2*289)= U(n, 289), Chebyshev's polynomials of the second kind. See A049310. G.f.: 1/(1-2*289*x+x^2). a(n)= sum((-1)^k*binomial(n-k, k)*578^(n-2*k), k=0..floor(n/2)), n>=0. a(n) = ((289+24*sqrt(145))^(n+1) - (289-24*sqrt(145))^(n+1))/(48*sqrt(145)), n>=0. MATHEMATICA LinearRecurrence[{578, -1}, {1, 578}, 12] (* Ray Chandler, Aug 12 2015 *) CROSSREFS Sequence in context: A232888 A035754 A107550 * A286233 A073735 A250727 Adjacent sequences:  A097765 A097766 A097767 * A097769 A097770 A097771 KEYWORD nonn,easy AUTHOR Wolfdieter Lang, Aug 31 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 18 08:15 EST 2018. Contains 318219 sequences. (Running on oeis4.)