login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361078
Numbers k for which k = gcd(k', k"), where k' is the arithmetic derivative of k (A003415) and k" is the second derivative of k (A068346).
0
4, 16, 27, 64, 108, 432, 729, 1024, 2916, 3125, 4096, 6912, 12500, 16384, 19683, 27648, 46656, 50000, 84375, 110592, 186624, 314928, 337500, 746496, 800000, 823543, 1048576, 1259712, 2125764, 2278125, 3200000, 3294172, 4194304, 5038848, 5400000, 7077888, 8503056
OFFSET
1,1
COMMENTS
The sequence is infinite because for p prime, m = p^p (A051674) is a term.
For the prime number p, the number m = 4^p is a term. Indeed: (4^p)' = p*4^p, (4^p)" = (1 + p^2)*4^p and gcd((4^p)', 4^p) = gcd(p*4^p, (1 + p^2)*4^p) = 4^p*gcd(p, 1 + p^2) = 4^p.
Numbers of the form a*b with a, b in A051674 are terms. Indeed, if m = a*b then m' = a'*b + a*b' = a*a + b*b = 2*a*b = 2*m, m" = a*b + 2*a'b + 2*a*b' = a*b + 2*a*b + 2*a*b = 5*a*b = 5*m and gcd(m', m") = (2*m, 5*m) = m.
EXAMPLE
4' = 4, 4" = 4 and gcd(4', 4") = gcd(4, 4) = 4, so 4 is a term.
16' = 32, 16" = 32' = 80 and gcd(16', 16") = gcd(32, 80) = 16, so 16 is a term.
MATHEMATICA
d[0] = d[1] = 0; d[n_] := n*Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); Select[Range[10^6], GCD[d[#], d[d[#]]] == # &] (* Amiram Eldar, Mar 03 2023 *)
PROG
(Magma) f:=func<h |h le 1 select 0 else h*(&+[Factorisation(h)[i][2] / Factorisation(h)[i][1]: i in [1..#Factorisation(h)]])>; [n:n in [2..100000]|not IsPrime(n) and Gcd(Floor(f(n)), Floor(f(Floor(f(n))))) eq n];
(PARI) ader(n) = vecsum([n/f[1]*f[2]|f<-factor(n+!n)~]); \\ A003415
isok(k) = gcd(ader(k), ader(ader(k))) == k; \\ Michel Marcus, Mar 03 2023
CROSSREFS
Sequence in context: A097764 A227993 A072873 * A072653 A368107 A008478
KEYWORD
nonn
AUTHOR
Marius A. Burtea, Mar 01 2023
STATUS
approved