Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Jan 23 2020 01:48:41
%S 1,487,236681,115026479,55902632113,27168564180439,13203866289061241,
%T 6417051847919582687,3118673994222628124641,1515669144140349348992839,
%U 736612085378215560982395113,357991957824668622288095032079,173983354890703572216453203195281
%N Pell equation solutions (11*a(n))^2 - 122*b(n)^2 = -1 with b(n):=A097767(n), n >= 0.
%H Michael De Vlieger, <a href="/A097766/b097766.txt">Table of n, a(n) for n = 0..372</a>
%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>
%H Giovanni Lucca, <a href="http://forumgeom.fau.edu/FG2019volume19/FG201902index.html">Integer Sequences and Circle Chains Inside a Hyperbola</a>, Forum Geometricorum (2019) Vol. 19, 11-16.
%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (486,-1).
%F G.f.: (1 + x)/(1 - 2*243*x + x^2).
%F a(n) = S(n, 2*243) + S(n-1, 2*243) = S(2*n, 2*sqrt(122)), with Chebyshev polynomials of the second kind. See A049310 for the triangle of S(n, x)= U(n, x/2) coefficients. S(-1, x) := 0 =: U(-1, x).
%F a(n) = ((-1)^n)*T(2*n+1, 11*i)/(11*i) with the imaginary unit i and Chebyshev polynomials of the first kind. See the T-triangle A053120.
%F a(n) = 486*a(n-1) - a(n-2), n > 1; a(0)=1, a(1)=487. - _Philippe Deléham_, Nov 18 2008
%F a(n) = (1/11)*sinh((2*n + 1)*arcsinh(11)). - _Bruno Berselli_, Apr 03 2018
%e (x,y) = (11*1=11;1), (5357=11*487;485), (2603491=11*236681;235709), ... give the positive integer solutions to x^2 - 122*y^2 =-1.
%t LinearRecurrence[{486, -1},{1, 487},12] (* _Ray Chandler_, Aug 12 2015 *)
%o (PARI) x='x+O('x^99); Vec((1+x)/(1-2*243*x+x^2)) \\ _Altug Alkan_, Apr 05 2018
%Y Cf. A097765 for S(n, 2*243).
%Y Cf. similar sequences of the type (1/k)*sinh((2*n+1)*arcsinh(k)) listed in A097775.
%K nonn,easy
%O 0,2
%A _Wolfdieter Lang_, Aug 31 2004