login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A097432
Integer part of the hypotenuse of right triangles with consecutive integer legs.
2
2, 3, 5, 6, 7, 9, 10, 12, 13, 14, 16, 17, 19, 20, 21, 23, 24, 26, 27, 29, 30, 31, 33, 34, 36, 37, 38, 40, 41, 43, 44, 45, 47, 48, 50, 51, 53, 54, 55, 57, 58, 60, 61, 62, 64, 65, 67, 68, 70, 71, 72, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 88, 89, 91, 92, 94, 95, 96, 98, 99, 101
OFFSET
1,1
FORMULA
a(n) = floor(sqrt(n^2 + (n+1)^2)) = floor(sqrt(A001844(n))).
EXAMPLE
If legs = 3,4 then hypot = floor(sqrt(9+16)) = 5, the 3rd term.
MAPLE
A097432 := proc(n)
floor(sqrt(n^2+(n+1)^2)) ;
end proc: # R. J. Mathar, Oct 04 2018
MATHEMATICA
Table[Floor[Sqrt[n^2+(n+1)^2]], {n, 100}] (* Harvey P. Dale, Apr 02 2011 *)
PROG
(PARI) f(n) = for(j=1, n, x=j; y=j+1; print1(floor(sqrt(x^2+y^2))", "))
CROSSREFS
Cf. A001951.
Sequence in context: A195121 A047332 A248233 * A364153 A230391 A284931
KEYWORD
nonn
AUTHOR
Cino Hilliard, Aug 22 2004
STATUS
approved