login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A097431
Integer part of the hypotenuse of right triangles with consecutive prime legs.
1
3, 5, 8, 13, 17, 21, 25, 29, 37, 42, 48, 55, 59, 63, 70, 79, 84, 90, 97, 101, 107, 114, 121, 131, 140, 144, 148, 152, 157, 169, 182, 189, 195, 203, 212, 217, 226, 233, 240, 248, 254, 263, 271, 275, 280, 290, 307, 318, 322, 326, 333, 339, 347, 359, 367, 376, 381
OFFSET
1,1
LINKS
FORMULA
a(n) = floor(sqrt(prime(n)^2 + prime(n+1)^2)) = floor(sqrt(A069484(n))).
EXAMPLE
If legs = 3,5 then floor(sqrt(9+25)) = 5, the 2nd entry.
MATHEMATICA
Table[Floor[Sqrt[Prime[n]^2 + Prime[n + 1]^2]], {n, 60}] (* Vincenzo Librandi, Mar 11 2015 *)
Floor[Sqrt[Total[#^2]]]&/@Partition[Prime[Range[60]], 2, 1] (* Harvey P. Dale, Mar 30 2024 *)
PROG
(PARI) a(n) = for(j=1, n, x=prime(j); y=prime(j+1); print1(floor(sqrt(x^2+y^2))", "))
(Magma) [Floor(Sqrt(NthPrime(n)^2 + NthPrime(n+1)^2)): n in [1..60]]; // Vincenzo Librandi, Mar 11 2015
CROSSREFS
Cf. A069484.
Sequence in context: A357048 A331467 A337289 * A123929 A036715 A337503
KEYWORD
nonn
AUTHOR
Cino Hilliard, Aug 22 2004
STATUS
approved