%I #13 Oct 04 2018 10:16:43
%S 2,3,5,6,7,9,10,12,13,14,16,17,19,20,21,23,24,26,27,29,30,31,33,34,36,
%T 37,38,40,41,43,44,45,47,48,50,51,53,54,55,57,58,60,61,62,64,65,67,68,
%U 70,71,72,74,75,77,78,79,81,82,84,85,86,88,89,91,92,94,95,96,98,99,101
%N Integer part of the hypotenuse of right triangles with consecutive integer legs.
%F a(n) = floor(sqrt(n^2 + (n+1)^2)) = floor(sqrt(A001844(n))).
%e If legs = 3,4 then hypot = floor(sqrt(9+16)) = 5, the 3rd term.
%p A097432 := proc(n)
%p floor(sqrt(n^2+(n+1)^2)) ;
%p end proc: # _R. J. Mathar_, Oct 04 2018
%t Table[Floor[Sqrt[n^2+(n+1)^2]],{n,100}] (* _Harvey P. Dale_, Apr 02 2011 *)
%o (PARI) f(n) = for(j=1,n,x=j;y=j+1;print1(floor(sqrt(x^2+y^2))","))
%Y Cf. A001951.
%K nonn
%O 1,1
%A _Cino Hilliard_, Aug 22 2004