login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A096280
Primes in A007443 (= binomial transform of primes).
1
2, 5, 13, 83, 2707, 71475193, 674721797, 6245693407, 118543624847, 82736199371081, 72298621492552303967009812018997, 2454725173623452943975951834280921, 59966692897276736774965300014477948187539553
OFFSET
1,1
COMMENTS
Sum of reciprocals = 0.2893406979695919267175673140... Are these primes infinite?
The next term is too large to be displayed here. See A287915 for the indices k which yield these primes A007443(k). - M. F. Hasler, Jun 02 2017
LINKS
Paolo Xausa, Table of n, a(n) for n = 1..20 (terms 1..17 from M. F. Hasler)
FORMULA
a(n) = A007443(A287915(n)). - M. F. Hasler, Jun 02 2017
MATHEMATICA
A007443[n_]:=Sum[Binomial[n-1, k-1]Prime[k], {k, n}];
With[{upto=500}, Select[Array[A007443, upto], PrimeQ]] (* or *)
Module[{upto=500, b}, b=Prime[Range[upto]]; Join[{2}, Select[Table[First[b=ListConvolve[{1, 1}, b]], upto-1], PrimeQ]]] (* Paolo Xausa, Oct 31 2023 *)
PROG
(PARI) \\ n = terms to add, m = order.
sucsumspr(n, m) = { local(a, b, i, j, k, sr); sr=0; a = primes(1001); b = vector(1001); for(i=1, m, for(j=1, n+n, b[j] = a[j]+ a[j+1]; ); a=b; if(isprime(a[1]), print1(a[1]", "); sr+=1.0/a[1]); ); print(); print(sr); }
(PARI) for(n=1, 999, ispseudoprime(A007443(n))&&print1(A007443(n)", ")) \\ M. F. Hasler, Jun 02 2017
CROSSREFS
See A287915 for the corresponding indices of A007443.
Sequence in context: A081650 A092262 A365326 * A236395 A032015 A325626
KEYWORD
nonn
AUTHOR
Cino Hilliard, Jun 23 2004
EXTENSIONS
Definition corrected, initial term 2 added, and edited by M. F. Hasler, Jun 02 2017
Name simplified by Paolo Xausa, Nov 05 2023
STATUS
approved