login
A096282
Sums of successive twin primes of order 2.
1
18, 22, 30, 42, 54, 66, 84, 108, 132, 156, 186, 222, 252, 276, 318, 378, 414, 426, 462, 522, 564, 588, 630, 690, 732, 756, 774, 786, 822, 882, 924, 948, 990, 1050, 1092, 1116, 1158, 1218, 1284, 1356, 1464, 1608, 1692, 1716, 1758, 1818, 1908, 2028, 2136, 2232
OFFSET
1,1
COMMENTS
Order here refers to the depth of the iterations in successive sums. Order 0 is the twin primes, order 1 is the sums of order 0, order 2 is the sums of order 1 etc.
LINKS
EXAMPLE
The twin prime quartet 3,5,5,7 has the first order sums 8,10,12 and the 2nd order sums 18,22 the first two terms in the sequence.
MATHEMATICA
Total/@Partition[Total/@Partition[Flatten[Select[Partition[Prime[ Range[ 150]], 2, 1], #[[2]]-#[[1]]==2&]], 2, 1], 2, 1] (* Harvey P. Dale, Feb 16 2016 *)
PROG
(PARI) \\ Sums of successive twin primes. = terms, m = order of sums.
sucsumstw(n, m) = { local(a, b, i, j, k, p); a = vector(1001); b = vector(1001); p=1; forprime(j=3, n, if(isprime(j+2), a[p] = j; a[p+1] = j+2; p+=2; ) ); for(i=1, m, for(j=1, n+n, b[j] = a[j]+ a[j+1]; ); a=b; ); for(k=1, p-3, print1(a[k]", "); ) }
CROSSREFS
Sequence in context: A154151 A296008 A049734 * A250737 A290172 A031407
KEYWORD
easy,nonn
AUTHOR
Cino Hilliard, Jun 23 2004
EXTENSIONS
Corrected and extended by Harvey P. Dale, Feb 16 2016
STATUS
approved