OFFSET
1,1
COMMENTS
Order here refers to the depth of the iterations in successive sums. Order 0 is the twin primes, order 1 is the sums of order 0, order 2 is the sums of order 1 etc.
LINKS
Harvey P. Dale, Table of n, a(n) for n = 1..1000
EXAMPLE
The twin prime quartet 3,5,5,7 has the first order sums 8,10,12 and the 2nd order sums 18,22 the first two terms in the sequence.
MATHEMATICA
Total/@Partition[Total/@Partition[Flatten[Select[Partition[Prime[ Range[ 150]], 2, 1], #[[2]]-#[[1]]==2&]], 2, 1], 2, 1] (* Harvey P. Dale, Feb 16 2016 *)
PROG
(PARI) \\ Sums of successive twin primes. = terms, m = order of sums.
sucsumstw(n, m) = { local(a, b, i, j, k, p); a = vector(1001); b = vector(1001); p=1; forprime(j=3, n, if(isprime(j+2), a[p] = j; a[p+1] = j+2; p+=2; ) ); for(i=1, m, for(j=1, n+n, b[j] = a[j]+ a[j+1]; ); a=b; ); for(k=1, p-3, print1(a[k]", "); ) }
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Cino Hilliard, Jun 23 2004
EXTENSIONS
Corrected and extended by Harvey P. Dale, Feb 16 2016
STATUS
approved