login
A096281
Sums of successive twin primes of order 1.
2
8, 10, 12, 18, 24, 30, 36, 48, 60, 72, 84, 102, 120, 132, 144, 174, 204, 210, 216, 246, 276, 288, 300, 330, 360, 372, 384, 390, 396, 426, 456, 468, 480, 510, 540, 552, 564, 594, 624, 660, 696, 768, 840, 852, 864, 894, 924
OFFSET
1,1
COMMENTS
Order here refers to the depth of the iterations in successive sums. Order 0 is the twin primes, order 1 is the sums of order 0, order 2 is the sums of order 1 etc.
LINKS
EXAMPLE
The twin prime quartet 3,5,5,7 has sums 8,10,12 the first three terms in the sequence.
MATHEMATICA
Total/@Partition[Flatten[Select[Partition[Prime[Range[120]], 2, 1], Last[#]- First[#]==2&]], 2, 1] (* Harvey P. Dale, Mar 24 2012 *)
PROG
(PARI) \Sums of successive twin primes sucsumstw(n, m) = { local(a, b, i, j, k, p); a = vector(1001); b = vector(1001); p=1; forprime(j=3, n, if(isprime(j+2), a[p] = j; a[p+1] = j+2; p+=2; ) ); for(i=1, m, for(j=1, n+n, b[j] = a[j]+ a[j+1]; ); a=b; ); for(k=1, p-2, print1(a[k]", "); ) }
CROSSREFS
Sequence in context: A158273 A157939 A208154 * A114873 A114621 A174156
KEYWORD
easy,nice,nonn
AUTHOR
Cino Hilliard, Jun 23 2004
STATUS
approved