

A096278


Sums of successive sums of successive sums of successive primes.


4



33, 50, 72, 96, 120, 144, 172, 206, 240, 274, 308, 336, 364, 402, 444, 480, 514, 548, 578, 610, 648, 692, 742, 786, 816, 840, 864, 900, 960, 1024, 1070, 1108, 1152, 1196, 1236, 1278, 1320, 1362, 1404, 1444, 1488, 1530, 1560, 1592, 1650, 1728, 1790, 1824
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

If we consider the mfold iterated "take sums of successive terms" operation acting on the primes, then for all m >= 1, the first term is always odd (and the only odd term); it is prime for m=1, 2, 4, 8, 21, 24, 27, 31, 40, 98,..., but not for m=3 (the present sequence). [Edited by M. F. Hasler, Jun 02 2017]


LINKS

Seiichi Manyama, Table of n, a(n) for n = 1..10000


FORMULA

Let f(n) = prime(n) + prime(n+1) f1(n) = f(n)+f(n+1) : SS of order 1 Then f2(n) = f1(n)+f1(n) : SS of order 2 is the general term of this sequence.
a(n) = A096277(n) + A096277(n+1).  M. F. Hasler, Jun 02 2017


EXAMPLE

The first two terms of SS order 1 is 13 and 20. 13+20 = 33 the first term of the sequence.


PROG

(PARI) g(n) = for(x=1, n, print1(f2(x)", ")) f(n) = return(prime(n)+prime(n+1)) f1(n) = return(f(n)+f(n+1)) f2(n) = return(f1(n)+f1(n+1))
(PARI) A096278(n, m=3)=for(k=0, m, prime(n+k)*binomial(m, k)) \\ or, to get a list:
A096278_vec(Nmax, m=3, v=primes(Nmax+m))=sum(k=0, m, binomial(m, k)*v[1+k, k1m]) \\ Alternatively, do m times v=v[^1]+v[^1].  M. F. Hasler, Jun 02 2017


CROSSREFS

Cf. A096277, A001043.
Sequence in context: A328247 A020293 A226698 * A204381 A034815 A014976
Adjacent sequences: A096275 A096276 A096277 * A096279 A096280 A096281


KEYWORD

easy,nonn


AUTHOR

Cino Hilliard, Jun 22 2004


STATUS

approved



