login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A096278 Sums of successive sums of successive sums of successive primes. 5
33, 50, 72, 96, 120, 144, 172, 206, 240, 274, 308, 336, 364, 402, 444, 480, 514, 548, 578, 610, 648, 692, 742, 786, 816, 840, 864, 900, 960, 1024, 1070, 1108, 1152, 1196, 1236, 1278, 1320, 1362, 1404, 1444, 1488, 1530, 1560, 1592, 1650, 1728, 1790, 1824 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
If we consider the m-fold iterated "take sums of successive terms" operation acting on the primes, then for all m >= 1, the first term is always odd (and the only odd term); it is prime for m=1, 2, 4, 8, 21, 24, 27, 31, 40, 98,..., but not for m=3 (the present sequence). [Edited by M. F. Hasler, Jun 02 2017]
LINKS
FORMULA
Let f(n) = prime(n) + prime(n+1) f1(n) = f(n)+f(n+1) : SS of order 1 Then f2(n) = f1(n)+f1(n) : SS of order 2 is the general term of this sequence.
a(n) = A096277(n) + A096277(n+1). - M. F. Hasler, Jun 02 2017
a(n) = prime(n)+3*prime(n+1)+3*prime(n+2)+prime(n+3). - Robert Israel, Dec 28 2022
EXAMPLE
The first two terms of SS order 1 is 13 and 20. 13+20 = 33 the first term of the sequence.
MAPLE
Ss:= L -> L[1..-2]+L[2..-1]:
(Ss@@3)([seq(ithprime(i), i=1..100)]); # Robert Israel, Dec 28 2022
MATHEMATICA
Nest[ListConvolve[{1, 1}, #]&, Prime[Range[100]], 3] (* Paolo Xausa, Oct 31 2023 *)
PROG
(PARI) g(n) = for(x=1, n, print1(f2(x)", ")) f(n) = return(prime(n)+prime(n+1)) f1(n) = return(f(n)+f(n+1)) f2(n) = return(f1(n)+f1(n+1))
(PARI) A096278(n, m=3)=for(k=0, m, prime(n+k)*binomial(m, k)) \\ or, to get a list:
A096278_vec(Nmax, m=3, v=primes(Nmax+m))=sum(k=0, m, binomial(m, k)*v[1+k, k-1-m]) \\ Alternatively, do m times v=v[^1]+v[^-1]. - M. F. Hasler, Jun 02 2017
CROSSREFS
Sequence in context: A328247 A020293 A226698 * A349551 A204381 A034815
KEYWORD
easy,nonn
AUTHOR
Cino Hilliard, Jun 22 2004
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 17 22:17 EDT 2024. Contains 374377 sequences. (Running on oeis4.)