login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A092843
a(n) = Sum_{k|n, k>1} phi(k-1), where phi() is the Euler phi function.
3
0, 1, 1, 3, 2, 6, 2, 9, 5, 9, 4, 18, 4, 15, 9, 17, 8, 26, 6, 29, 11, 17, 10, 46, 10, 25, 17, 35, 12, 48, 8, 47, 21, 29, 20, 62, 12, 43, 23, 59, 16, 68, 12, 61, 33, 35, 22, 100, 18, 59, 29, 59, 24, 90, 24, 81, 31, 49, 28, 136, 16, 69, 45, 83, 38, 86, 20, 97, 43, 83, 24, 160, 24, 85
OFFSET
1,4
LINKS
FORMULA
Conjecture: Sum_{k=1..n} a(k) ~ n^2/2. - Vaclav Kotesovec, Jun 25 2024
EXAMPLE
a(6) = phi(2-1) + phi(3-1) + phi(6-1) = 1 + 1 + 4 = 6.
MATHEMATICA
f[n_] := Block[{k = Drop[Divisors[n], 1]}, Plus @@ EulerPhi[k - 1]]; Table[ f[n], {n, 75}] (* Robert G. Wilson v, Nov 12 2004 *)
PROG
(Magma)
f:= func< n | n eq 1 select 0 else EulerPhi(n-1) >;
A092843:= func< n | (&+[f(d): d in Divisors(n)]) >;
[A092843(n): n in [1..100]]; // G. C. Greubel, Jun 24 2024
(SageMath)
def A092843(n): return sum(euler_phi(k-1) for k in (1..n) if (k).divides(n))
[A092843(n) for n in range(1, 101)] # G. C. Greubel, Jun 24 2024
(PARI) a(n) = sumdiv(n, k, if (k>1, eulerphi(k-1))); \\ Michel Marcus, Jun 25 2024
CROSSREFS
Sequence in context: A324890 A180240 A065228 * A078589 A077880 A198930
KEYWORD
nonn
AUTHOR
Leroy Quet, Nov 09 2004
EXTENSIONS
More terms from Robert G. Wilson v, Nov 12 2004
STATUS
approved