login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A077880
Expansion of (1-x)^(-1)/(1-2*x^2+x^3).
2
1, 1, 3, 2, 6, 2, 11, -1, 21, -12, 44, -44, 101, -131, 247, -362, 626, -970, 1615, -2565, 4201, -6744, 10968, -17688, 28681, -46343, 75051, -121366, 196446, -317782, 514259, -832009, 1346301, -2178276, 3524612, -5702852, 9227501, -14930315, 24157855, -39088130, 63246026, -102334114
OFFSET
0,3
FORMULA
a(n) = (-1)^n*Fibonacci(n-1) + n. - Vladeta Jovovic, Jul 18 2004
a(n) = A001924(-3-n) = 2*a(n-2) - a(n-3) + 1. - Michael Somos, Dec 31 2012
If 0 is prepended then BINOMIAL transform is A079282 with 0 prepended. - Michael Somos, Dec 31 2012
a(n) = (-1)^n * Sum_{k=0..n} binomial(k-2,n-k). - Seiichi Manyama, Aug 14 2024
EXAMPLE
1 + x + 3*x^2 + 2*x^3 + 6*x^4 + 2*x^5 + 11*x^6 - x^7 + 21*x^8 - 12*x^9 + 44*x^10 + ...
MATHEMATICA
Table[(-1)^n*Fibonacci[n - 1] + n, {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, Jun 28 2011 *)
PROG
(PARI) {a(n) = fibonacci(1-n) + n} /* Michael Somos, Dec 31 2012 */
CROSSREFS
Cf. A000045.
Sequence in context: A065228 A092843 A078589 * A198930 A263353 A248945
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Nov 17 2002
STATUS
approved