login
A263353
Decimal expansion of the generalized hypergeometric function 3F2(1/2,1/2,1/2; 3/2,3/2; x) at x=1/2.
2
1, 0, 3, 2, 6, 3, 1, 9, 5, 5, 7, 4, 4, 0, 7, 1, 4, 7, 2, 6, 7, 7, 0, 9, 3, 5, 3, 3, 9, 8, 1, 5, 8, 5, 8, 9, 4, 7, 0, 7, 3, 0, 2, 8, 2, 0, 4, 1, 2, 2, 0, 7, 6, 6, 4, 8, 5, 4, 0, 0, 9, 8, 1, 0, 5, 0, 0, 2, 3, 3, 8, 7, 3, 4, 6, 3, 0, 7, 0, 2, 0, 7, 5, 0, 4, 4, 8, 7, 5, 0, 6, 4, 3, 4, 5, 4, 9, 3, 3
OFFSET
1,3
LINKS
R. J. Mathar, Yet another table of integrals, arXiv:1207.5845 [math.CA], 2012-2016. Eq. (9.81).
FORMULA
Equals (Pi*log(2)/4+Catalan)/sqrt(2) = (A003881 * A002162 + A006752) * A010503.
EXAMPLE
1.032631955744071472677093...
MAPLE
evalf(hypergeom([1/2, 1/2, 1/2], [3/2, 3/2], 1/2) );
MATHEMATICA
RealDigits[(Pi*Log[2]/4 + Catalan)/Sqrt[2], 10, 100][[1]] (* G. C. Greubel, Aug 25 2018 *)
PROG
(PARI) default(realprecision, 100); (Pi*log(2)/4 + Catalan)/sqrt(2) \\ G. C. Greubel, Aug 25 2018
(Magma) SetDefaultRealField(RealField(100)); R:=RealField(); (Pi(R)*Log(2)/4 + Catalan(R))/Sqrt(2); // G. C. Greubel, Aug 25 2018
CROSSREFS
Sequence in context: A078589 A077880 A198930 * A248945 A131969 A058971
KEYWORD
nonn,cons
AUTHOR
R. J. Mathar, Oct 16 2015
STATUS
approved