login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A263351
Fixed points of A243625: integers n such that A243625(n)=n.
1
1, 4, 9, 18, 23, 48, 54, 60, 63, 77, 91, 92, 93, 104, 117, 126, 129, 137, 151, 152, 153, 167, 169, 214, 229, 239, 255, 256, 264, 266, 267, 270, 282, 285, 289, 293, 295, 297, 326, 342, 344, 345, 348, 350, 355, 364, 400, 420, 428, 436, 439, 440, 447, 454, 458
OFFSET
1,2
COMMENTS
Among first 1000 terms of A243625 there are 124 fixed points.
Almost certainly A243625 is a permutation of natural numbers.
And almost certainly there is no (easy) proof of it.
LINKS
MAPLE
with(numtheory):
b:= proc(n) is(n=1) end: h:= 2:
g:= proc(n) option remember; global h; local k, t;
if n=1 then 1 else t:=g(n-1);
for k from h while b(k) or bigomega(t+k)<>2
do od; b(k):=true; while b(h) do h:=h+1 od; k
fi
end:
a:= proc(n) option remember; local k;
for k from 1+`if`(n=1, 0, a(n-1)) do
if g(k)=k then break fi
od: k
end:
seq(a(n), n=1..100); # Alois P. Heinz, Oct 17 2015
MATHEMATICA
b[n_] := n == 1;
h = 2;
g[n_] := g[n] = Module[{k, t}, If[n == 1, 1, t = g[n - 1]; For[k = h, b[k] || PrimeOmega[t + k] != 2, k++]; b[k] = True; While[b[h], h++]; k]];
a[n_] := a[n] = Module[{k}, For[k = 1 + If[n == 1, 0, a[n - 1]], True, k++, If[g[k] == k, Break[]]]; k];
Array[a, 100] (* Jean-François Alcover, Nov 23 2020, after Alois P. Heinz *)
CROSSREFS
Cf. A243625.
Sequence in context: A352997 A313357 A313358 * A064599 A368780 A062952
KEYWORD
nonn
AUTHOR
Zak Seidov, Oct 16 2015
STATUS
approved