login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A263348
Expansion of (eta(q^6) * eta(q^10) / (eta(q) * eta(q^15)))^2 in powers of q.
1
1, 2, 5, 10, 20, 36, 63, 106, 175, 280, 439, 676, 1024, 1528, 2250, 3276, 4718, 6728, 9507, 13324, 18526, 25574, 35064, 47774, 64701, 87134, 116722, 155572, 206362, 272492, 358265, 469096, 611801, 794916, 1029126, 1327738, 1707322, 2188432, 2796528, 3563048
OFFSET
0,2
LINKS
FORMULA
Euler transform of period 30 sequence [2, 2, 2, 2, 2, 0, 2, 2, 2, 0, 2, 0, 2, 2, 4, 2, 2, 0, 2, 0, 2, 2, 2, 0, 2, 2, 2, 2, 2, 0, ...].
a(n) = A094023(2*n) = A145728(2*n).
Convolution square of A094023.
EXAMPLE
G.f. = 1 + 2*x + 5*x^2 + 10*x^3 + 20*x^4 + 36*x^5 + 63*x^6 + 106*x^7 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (QPochhammer[ q^6] QPochhammer[ q^10] / (QPochhammer[ q] QPochhammer[ q^15]))^2, {q, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^6 + A) * eta(x^10 + A) / (eta(x + A) * eta(x^15 + A)))^2, n))};
(PARI) q='q+O('q^99); Vec((eta(q^6)*eta(q^10)/(eta(q)*eta(q^15)))^2) \\ Altug Alkan, Jul 31 2018
CROSSREFS
Sequence in context: A160461 A365631 A117487 * A328548 A294536 A325650
KEYWORD
nonn
AUTHOR
Michael Somos, Oct 15 2015
STATUS
approved