login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (eta(q^6) * eta(q^10) / (eta(q) * eta(q^15)))^2 in powers of q.
1

%I #9 Aug 01 2018 00:48:51

%S 1,2,5,10,20,36,63,106,175,280,439,676,1024,1528,2250,3276,4718,6728,

%T 9507,13324,18526,25574,35064,47774,64701,87134,116722,155572,206362,

%U 272492,358265,469096,611801,794916,1029126,1327738,1707322,2188432,2796528,3563048

%N Expansion of (eta(q^6) * eta(q^10) / (eta(q) * eta(q^15)))^2 in powers of q.

%H G. C. Greubel, <a href="/A263348/b263348.txt">Table of n, a(n) for n = 0..2500</a>

%F Euler transform of period 30 sequence [2, 2, 2, 2, 2, 0, 2, 2, 2, 0, 2, 0, 2, 2, 4, 2, 2, 0, 2, 0, 2, 2, 2, 0, 2, 2, 2, 2, 2, 0, ...].

%F a(n) = A094023(2*n) = A145728(2*n).

%F Convolution square of A094023.

%e G.f. = 1 + 2*x + 5*x^2 + 10*x^3 + 20*x^4 + 36*x^5 + 63*x^6 + 106*x^7 + ...

%t a[ n_] := SeriesCoefficient[ (QPochhammer[ q^6] QPochhammer[ q^10] / (QPochhammer[ q] QPochhammer[ q^15]))^2, {q, 0, n}];

%o (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^6 + A) * eta(x^10 + A) / (eta(x + A) * eta(x^15 + A)))^2, n))};

%o (PARI) q='q+O('q^99); Vec((eta(q^6)*eta(q^10)/(eta(q)*eta(q^15)))^2) \\ _Altug Alkan_, Jul 31 2018

%Y Cf. A094023, A145728.

%K nonn

%O 0,2

%A _Michael Somos_, Oct 15 2015