OFFSET
1,1
COMMENTS
a(p-1) = (p+1)/2 for all odd primes p. Thus there are infinitely many distinct terms. - Ely Golden, Mar 03 2018
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
P. Schogt, The Wild Number Problem: math or fiction?, arXiv preprint arXiv:1211.6583 [math.HO], 2012. - From N. J. A. Sloane, Jan 03 2013
EXAMPLE
1 -> (1+2)/2 = 3/2 -> (1+5)/2 = 3, so a(1) = 3.
51 -> 49/3 -> 49/3 -> ..., so a(51) = 0.
MAPLE
with(numtheory); f := proc(n) if whattype(n) = integer then sigma(n+1)/sigma[0](n+1) else sigma(numer(n)+denom(n))/sigma[0](numer(n)+denom(n)); fi; end;
MATHEMATICA
f[x_] := With[{p = Numerator[x], q = Denominator[x]}, DivisorSigma[1, p+q]/DivisorSigma[0, p+q]]; a[n_] := If[ IntegerQ[ r = FixedPoint[f, n, SameTest -> (#1 == #2 || IntegerQ[#2] &)]], r, 0]; Table[a[n], {n, 1, 75}] (* Jean-François Alcover, Jul 18 2012 *)
PROG
(Haskell)
import Data.Ratio ((%), numerator, denominator)
a058971 n = f [n % 1] where
f xs@(x:_) | denominator y == 1 = numerator y
| y `elem` xs = 0
| otherwise = f (y : xs)
where y = (a000203 x') % (a000005 x')
x' = numerator x + denominator x
-- Reinhard Zumkeller, Aug 02 2012
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
N. J. A. Sloane, Jan 14 2001
EXTENSIONS
More terms from Matthew Conroy, Apr 18 2001, who remarks that a(51) = a(655) = a(1039) = 0 are all the zeros of a(n) for n < 10^5
No more zero terms <= 10^6 found by Reinhard Zumkeller, Aug 02 2012
STATUS
approved