login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k|n, k>1} phi(k-1), where phi() is the Euler phi function.
3

%I #17 Jun 25 2024 04:02:19

%S 0,1,1,3,2,6,2,9,5,9,4,18,4,15,9,17,8,26,6,29,11,17,10,46,10,25,17,35,

%T 12,48,8,47,21,29,20,62,12,43,23,59,16,68,12,61,33,35,22,100,18,59,29,

%U 59,24,90,24,81,31,49,28,136,16,69,45,83,38,86,20,97,43,83,24,160,24,85

%N a(n) = Sum_{k|n, k>1} phi(k-1), where phi() is the Euler phi function.

%H G. C. Greubel, <a href="/A092843/b092843.txt">Table of n, a(n) for n = 1..10000</a>

%F Conjecture: Sum_{k=1..n} a(k) ~ n^2/2. - _Vaclav Kotesovec_, Jun 25 2024

%e a(6) = phi(2-1) + phi(3-1) + phi(6-1) = 1 + 1 + 4 = 6.

%t f[n_] := Block[{k = Drop[Divisors[n], 1]}, Plus @@ EulerPhi[k - 1]]; Table[ f[n], {n, 75}] (* _Robert G. Wilson v_, Nov 12 2004 *)

%o (Magma)

%o f:= func< n | n eq 1 select 0 else EulerPhi(n-1) >;

%o A092843:= func< n | (&+[f(d): d in Divisors(n)]) >;

%o [A092843(n): n in [1..100]]; // _G. C. Greubel_, Jun 24 2024

%o (SageMath)

%o def A092843(n): return sum(euler_phi(k-1) for k in (1..n) if (k).divides(n))

%o [A092843(n) for n in range(1, 101)] # _G. C. Greubel_, Jun 24 2024

%o (PARI) a(n) = sumdiv(n, k, if (k>1, eulerphi(k-1))); \\ _Michel Marcus_, Jun 25 2024

%Y Cf. A000010, A069949.

%K nonn

%O 1,4

%A _Leroy Quet_, Nov 09 2004

%E More terms from _Robert G. Wilson v_, Nov 12 2004