login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A092846
a(n) = 100...001^n, where there are just enough zeros for the result to display the terms in the n-th row of Pascal's triangle.
2
1, 11, 121, 1331, 14641, 10510100501, 1061520150601, 107213535210701, 10828567056280801, 1009036084126126084036009001, 1010045120210252210120045010001, 1011055165330462462330165055011001, 1012066220495792924792495220066012001
OFFSET
0,2
LINKS
FORMULA
a(n) = (10^k + 1)^n, where k is the number of digits in A001405(n). - Eric M. Schmidt, Apr 04 2014
EXAMPLE
a(0)=11^0
a(1)=11^1
a(2)=11^2
a(3)=11^3
a(4)=11^4
a(5)=101^5
a(6)=101^6
a(7)=101^7
a(8)=101^8
a(9)=1001^9
a(10)=1001^10
a(11)=1001^11
PROG
(Sage) def A092846(n) : return (10^binomial(n, n//2).ndigits()+1)^n # Eric M. Schmidt, Apr 04 2014
CROSSREFS
Sequence in context: A195946 A003590 A072051 * A329734 A214993 A263608
KEYWORD
nonn,base
AUTHOR
Jorge Coveiro, Apr 15 2004
STATUS
approved