login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A092119
EULER transform of A001511.
10
1, 1, 3, 4, 10, 13, 26, 35, 66, 88, 150, 202, 331, 442, 688, 919, 1394, 1848, 2716, 3590, 5174, 6796, 9589, 12542, 17440, 22680, 31055, 40208, 54420, 70096, 93772, 120256, 159380, 203436, 267142, 339573, 442478, 560050, 724302, 913198, 1173375, 1473622
OFFSET
0,3
COMMENTS
From Gary W. Adamson, Feb 11 2010: (Start)
Given A000041, P(x) = A(x)/A(x^2) with P(x) = (1 + x + 2x^2 + 3x^3 + 5x^4 + 7x^5 + ...),
A(x) = (1 + x + 3x^2 + 4x^3 + 10x^4 + 13x^5 + ...),
A(x^2) = (1 + x^2 + 3x^4 + 4x^6 + 10x^8 + ...), where A092119 = (1, 1, 3, 4, 10, ...) = Euler transform of the ruler sequence, A001511. (End)
Let M = triangle A173238 as an infinite lower triangular matrix. Then A092119 = lim_{n->infinity} M^n. Let P(x) = polcoeff A000041 = (1 + x + 2x^2 + 3x^3 + ...), and A(x) = polcoeff A092119. Then P(x) = A(x) / A(x^2), an example of a conjectured infinite set of operations (cf. A173238). - Gary W. Adamson, Feb 13 2010
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Alois P. Heinz)
N. J. A. Sloane, Transforms
FORMULA
G.f.: 1/Product_{k>=0} P(x^(2^k)) where P(x) = Product_{k>=1} (1 - x^k). - Joerg Arndt, Jun 21 2011
MAPLE
# Uses EulerTransform from A358369.
t := EulerTransform(n -> padic[ordp](2*n, 2)):
seq(t(n), n = 0..41); # Peter Luschny, Nov 18 2022
MATHEMATICA
m = 42;
1/Product[QPochhammer[x^(2^k)], {k, 0, Log[2, m]//Ceiling}] + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, Jan 14 2020, after Joerg Arndt *)
PROG
(PARI) N=66; x='x+O('x^N); /* that many terms */
gf=1/prod(e=0, ceil(log(N)/log(2)), eta(x^(2^e)));
Vec(gf) /* show terms */ /* Joerg Arndt, Jun 21 2011 */
CROSSREFS
Cf. A000041. - Gary W. Adamson, Feb 11 2010
Cf. A173241.
Sequence in context: A073443 A257494 A302347 * A362649 A143372 A035594
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Mar 29 2004
STATUS
approved